Skip to main content
Log in

Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal oxides

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Herein we provide a novel high-efficiency nanocomposite for bacterial capture based on mixed metal oxides (MMOs) with deleterious chromium properties. With both the layer structure of layered double hydroxides (LDHs) and the magnetic properties of Fe, MMOs enrich the location of ionic forms on the surface, providing a good carrier for adsorption of the heavy metal Cr(VI). The capacity for adsorption of Cr(VI) by MMOs can be as high as 98.80 mg/g. The prepared Cr(VI)-MMOs achieved extremely expeditious location of gram-negative antibiotic-resistant E. coliNDM-1 by identifying lipid bilayers. Cr-MMOs with a Cr loading of 19.70 mg/g had the best bactericidal effect, and the concentration of E. coliNDM-1 was decreased from ∼10 to ∼10 CFU/mL after 30 min of reaction. The binding of nitrogen and phosphorus hydrophilic groups to chromate generated realistic models for density functional theory (DFT) calculations. The specific selectivity of MMOs toward bacterial cells was improved by taking Cr(VI) as a transferable medium, thereby enhancing the antibacterial activity of Cr-MMOs. Under the combined action of chemical and physical reactions, Cr(VI)-MMOs achieved high capacity for inactivation of bacteria. Moreover, the metallic elements ratio in Cr-MMOs remained stable in their initial valence states after inactivation. This guaranteed high removal efficiency for both heavy metals and bacteria, allowing recycling of the adsorbent in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostinelli E, Battistoni C, Fiorani D, Mattogno G, Nogues M (1989). An XPS study of the electronic structure of the ZnxCd1−xCr2 (x =S, Se) spinel system. Journal of Physics and Chemistry of Solids, 50(3): 269–272

    Article  CAS  Google Scholar 

  • Ai Z, Cheng Y, Zhang L, Qiu J (2008). Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core-shell nanowires. Environmental Science & Technology, 42(18): 6955–6960

    Article  CAS  Google Scholar 

  • Barrera-Díaz C E, Lugo-Lugo V, Bilyeu B (2012). A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. Journal of Hazardous Materials, 223–224: 1–12

    Article  Google Scholar 

  • Blasse G (1965). Magnetic properties of mixed metal oxides containing trivalent cobalt. Journal of Applied Physics, 36(3): 879–883

    Article  CAS  Google Scholar 

  • Cavani F, Trifirò F, Vaccari A (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11: 176–179

    Article  Google Scholar 

  • Chatterjee A, Bharadiya P, Hansora D (2019). Layered double hydroxide based bionanocomposites. Applied Clay Science, 177: 19–36

    Article  CAS  Google Scholar 

  • Chen C W, Hsu C Y, Lai S M, Syu W J, Wang T Y, Lai P S (2014). Metal nanobullets for multidrug resistant bacteria and biofilms. Advanced Drug Delivery Reviews, 78: 88–104

    Article  CAS  Google Scholar 

  • Cheung K H, Gu J D (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. International Biodeterioration & Biodegradation, 59(1): 8–15

    Article  CAS  Google Scholar 

  • Deng S, Bai R (2004). Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: Performance and mechanisms. Water Research, 38(9): 2424–2431

    Article  CAS  Google Scholar 

  • Desimoni E, Malitesta C, Zambonin P, Riviere J (1988). An X-ray photoelectron spectroscopic study of some chromium-oxygen systems. Surface and Interface Analysis, 13(2–3): 173–179

    Article  CAS  Google Scholar 

  • Dhanalakshmi A, Palanimurugan A, Natarajan B (2017). Enhanced antibacterial effect using carbohydrates biotemplate of ZnO nano thin films. Carbohydrate Polymers, 168: 191–200

    Article  CAS  Google Scholar 

  • Ding Q, Chen S, Shang F, Liang J, Liu C (2016). Cu2O/Ag co-deposited TiO2 nanotube array film prepared by pulse-reversing voltage and photocatalytic properties. Nanotechnology, 27(48): 485705

    Article  Google Scholar 

  • Fein J B (2006). Thermodynamic modeling of metal adsorption onto bacterial cell walls: current challenges. Advances in Agronomy, 90: 179–202

    Article  CAS  Google Scholar 

  • Feng M, Yin H, Peng H, Liu Z, Lu G, Dang Z (2017). Hexavalent chromium induced oxidative stress and apoptosis in Pycnoporus sanguineus. Environmental Pollution, 228: 128–139

    Article  CAS  Google Scholar 

  • Gu P, Zhang S, Li X, Wang X, Wen T, Jehan R, Alsaedi A, Hayat T, Wang X (2018). Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environmental Pollution, 240: 493–505

    Article  CAS  Google Scholar 

  • Ho Y S, Mckay G (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5): 451–465

    Article  CAS  Google Scholar 

  • Hou X, Mao D, Ma H, Ai Y, Zhao X, Deng J, Li D, Liao B (2015). Antibacterial ability of Ag-TiO2 nanotubes prepared by ion implantation and anodic oxidation. Materials Letters, 161(DEC.15): 309–312

    Article  CAS  Google Scholar 

  • Hu H, Liu J, Xu Z, Zhang L, Cheng B, Ho W (2019). Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo red and Cr(VI) ions. Applied Surface Science, 478: 981–990

    Article  CAS  Google Scholar 

  • Hu H W, Wang J T, Li J, Shi X Z, Ma Y B, Chen D, He J Z (2017). Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils. Environmental Science & Technology, 51(2): 790–800

    Article  CAS  Google Scholar 

  • Huang H, Chen Y, Yang S, Zheng X (2019). CuO and ZnO nanoparticles drive the propagation of antibiotic resistance genes during sludge anaerobic digestion: possible role of stimulated signal transduction. Environmental Science. Nano, 6(2): 528–539

    CAS  Google Scholar 

  • Inglezakis V J, Loizidou M D, Grigoropoulou H P (2002). Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite. Water Research, 36(11): 2784–2792

    Article  CAS  Google Scholar 

  • Jiménez-Cedillo M J, Olguín M T, Fall Ch (2009). Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron-manganese-modified clinoptilolite-rich tuffs. Journal of Hazardous Materials, 163(2–3): 939–945

    Article  Google Scholar 

  • Kang S, Herzberg M, Rodrigues D F, Elimelech M (2008). Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 24(13): 6409–6413

    Article  CAS  Google Scholar 

  • Kensche A, Holder C, Basche S, Tahan N, Hannig C, Hannig M (2017). Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ. Archives of Oral Biology, 80: 18–26

    Article  CAS  Google Scholar 

  • Lazaridis N K, Asouhidou D D (2003). Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg-Al-CO3 hydrotalcite. Water Research, 37(12): 2875–2882

    Article  CAS  Google Scholar 

  • Li Y, Gao B, Wu T, Sun D, Li X, Wang B, Lu F (2009). Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Research, 43(12): 3067–3075

    Article  CAS  Google Scholar 

  • Liu J Y, Duan C, Zhou J Z, Li X L, Qian G R, Xu Z P (2013a). Adsorption of bacteria onto layered double hydroxide particles to form biogranule-like aggregates. Applied Clay Science, 75–76: 39–45

    Article  Google Scholar 

  • Liu Z, Li W, Wang J, Pan J, Sun S, Yu Y, Zhao B, Ma Y, Zhang T, Qi J, Liu G, Lu F (2013b). Identification and characterization of the first Escherichia coli strain carrying NDM-1 gene in China. PLoS One, 8(6): e66666

    Article  CAS  Google Scholar 

  • Nguyen C C, Hugie C N, Kile M L, Navab-Daneshmand T (2019). Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review. Frontiers of Environmental Science & Engineering, 13(3): 46

    Article  Google Scholar 

  • Ruthven D M (1984). Principles of Adsorption and Adsorption Processes. Fredericton, New Brunswick: John Wiley & Sons, 29–84

    Google Scholar 

  • Sansuk S, Nanan S, Srijaranai S (2015). New eco-friendly extraction of anionic analytes based on formation of layered double hydroxides. Green Chemistry, 17(7): 3837–3843

    Article  CAS  Google Scholar 

  • Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi N K, Dumat C, Rashid M I (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178: 513–533

    Article  CAS  Google Scholar 

  • Slavin Y N, Asnis J, Häfeli U O, Bach H (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15(1): 65

    Article  Google Scholar 

  • Smith S C, Rodrigues D F (2015). Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications. Carbon, 91: 122–143

    Article  CAS  Google Scholar 

  • Song J, Zhang F, Huang Y, Keller A A, Tang X, Zhang W, Jia W, Santos J (2018). Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles. Environmental Science. Nano, 5(6): 1255–1520

    Google Scholar 

  • Su H C, Liu Y S, Pan C G, Chen J, He L Y, Ying G G (2018). Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water. Science of the Total Environment, 616–617: 453–461

    Article  Google Scholar 

  • Sun X, Yan Y, Li J, Han W, Wang L (2014). SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity. Journal of Hazardous Materials, 266: 26–33

    Article  CAS  Google Scholar 

  • Sun X F, Ma Y, Liu X W, Wang S G, Gao B Y, Li X M (2010). Sorption and detoxification of chromium(VI) by aerobic granules functionalized with polyethylenimine. Water Research, 44(8): 2517–2524

    Article  CAS  Google Scholar 

  • Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle H P, Walter E (2001). Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? Journal of Controlled Release, 76(1–2): 59–71

    Article  CAS  Google Scholar 

  • Türgay O, Ersöz G, Atalay S, Forss J, Welander U (2011). The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Separation and Purification Technology, 79(1): 26–33

    Article  Google Scholar 

  • Wan K, Lin W F, Zhu S, Zhang S H, Yu X (2020). Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review and meta-analysis. Frontiers of Environmental Science & Engineering, 14(1): 10

    Article  Google Scholar 

  • Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, Chen J, Wang X (2019). Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environmental Pollution, 246: 608–620

    Article  CAS  Google Scholar 

  • Xu J, Xu Y, Wang H, Guo C, Qiu H, He Y, Zhang Y, Li X, Meng W (2015). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 119: 1379–1385

    Article  CAS  Google Scholar 

  • Yao K, Dong Y Y, Bian J, Ma M G, Li J F (2015). Understanding the mechanism of ultrasound on the synthesis of cellulose/Cu(OH)2/CuO hybrids. Ultrasonics Sonochemistry, 24: 27–35

    Article  CAS  Google Scholar 

  • Yao W, Wang J, Wang P, Wang X, Yu S, Zou Y, Hou J, Hayat T, Alsaedi A, Wang X (2017). Synergistic coagulation of GO and secondary adsorption of heavy metal ions on Ca/Al layered double hydroxides. Environmental Pollution, 229: 827–836

    Article  CAS  Google Scholar 

  • Yasuyuki M, Kunihiro K, Kurissery S, Kanavillil N, Sato Y, Kikuchi Y (2010). Antibacterial properties of nine pure metals: A laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling, 26(7): 851–858

    Article  CAS  Google Scholar 

  • Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G (2021). Antibacterial metals and alloys for potential biomedical implants. Bioactive Materials, 6(8): 2569–2612

    Article  CAS  Google Scholar 

  • Zhang L, Niu C G, Wen X J, Guo H, Zhao X F, Huang D W, Zeng G M (2018). A facile strategy to fabricate hollow cadmium sulfide nanospheres with nanoparticles-textured surface for hexavalent chromium reduction and bacterial inactivation. Journal of Colloid and Interface Science, 514: 396–406

    Article  CAS  Google Scholar 

  • Zhang X, Yan L, Li J, Yu H (2020). Adsorption of heavy metals by 1-cysteine intercalated layered double hydroxide: Kinetic, isothermal and mechanistic studies. Journal of Colloid and Interface Science, 562: 149–158

    Article  CAS  Google Scholar 

  • Zhao Q C, Ren L, Zhou H O, Cao T, Chen P (2014). Enhanced adsorption of Pb(II) by Al(OH)3/(PAA-CO-PAM) sub-microspheres with three-dimensional interpenetrating network structure. Chemical Engineering Journal, 250: 6–13

    Article  CAS  Google Scholar 

  • Zou X, Zhang L, Wang Z, Luo Y (2016). Mechanisms of the antimicrobial activities of graphene materials. Journal of the American Chemical Society, 138(7): 2064–2077

    Article  CAS  Google Scholar 

  • Zubair M, Daud M, Mckay G, Shehzad F, Al-Harthi MA (2017). Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Applied Clay Science, 143: 279–292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the National Key Research and Development Program of China (No. 2017YFA0207203), and National Natural Science Foundation of China (Grant No. 51978195).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Wang or Jun Ma.

Additional information

Highlights

• LDHs and MMOs was synthesized by ultrasound-assisted one-step co-precipitation.

• MMOs performs the best for Cr(VI) and E. coliNDM-1 simultaneous removal.

• Possible antibacterial pathways of Cr-MMOs were proposed.

Supporting Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, B., Zhu, L. et al. Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal oxides. Front. Environ. Sci. Eng. 16, 68 (2022). https://doi.org/10.1007/s11783-021-1502-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-021-1502-7

Keywords

Navigation