Skip to main content
Log in

Effects of Fe(II) on anammox community activity and physiologic response

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Though there are many literatures studying the effects of iron on anammox process, these studies only focus on the reactor performance and/or the microbial community changes, the detailed effects and mechanisms of Fe(II) on anammox bacterial activity and physiology have not been explored. In this study, four Fe(II) concentrations (0.03,0.09,0.12 and 0.75mmol/L) were employed into the enriched anammox culture. The enhancement and inhibition effects of Fe(II) on anammox process and bacterial physiology were investigated. It was discovered that the anammox process and bacterial growth were enhanced by 0.09 and 0.12 mmol/L Fe(II), in which the 0.12 mmol/L Fe(II) had advantage in stimulating the total anammox activity and bacterial abundance, while 0.09 mmol/L Fe (II) enhanced the relative anammox activity better. The anammox activity could be inhibited by 0.75 mmol/L Fe(II) immediately, while the inhibition was recoverable. Both 0.09 and 0.12 mmol/L Fe(II) induced more genes being expressed, while didn’t show a stimulation on the relative expression level of functional genes. And anammox bacteria showed a stress response to detoxify the Fe inhibition once inhibited by 0.75 mmol/L Fe(II). This study provides more information about physiologic response of anammox bacteria to external influence (enhancement and inhibition), and may also instruct the future application of anammox process in treating various sources of wastewater (containing external disturbances such as heavy metals) and/or different treatment strategies (e.g. from side-stream to main-stream).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews S C (1998). Iron storage in bacteria. Advances in Microbial Physiology, 40: 281–351

    Article  CAS  Google Scholar 

  • Andrews S C, Robinson A K, Rodriguez-Quinones F (2003). Bacterial iron homeostasis. FEMS Microbiology Reviews, 27(2–3): 215–237

    Article  CAS  Google Scholar 

  • APHA (1998). Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, D.C.: American Public Health Association

    Google Scholar 

  • Barrangou R (2015). The roles of CRISPR-Cas systems in adaptive immunity and beyond. Current Opinion in Immunology, 32: 36–41

    Article  CAS  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero D A, Horvath P (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819): 1709–1712

    Article  CAS  Google Scholar 

  • Bi Z, Qiao S, Zhou J T, Tang X, Zhang J (2014). Fast start-up of anammox process with appropriate ferrous iron concentration. Bioresource Technology, 170: 506–512

    Article  CAS  Google Scholar 

  • Cua L S, Stein L Y (2011). Effects of nitrite on ammonia-oxidizing activity and gene regulation in three ammonia-oxidizing bacteria. FEMS Microbiology Letters, 319(2): 169–175

    Article  CAS  Google Scholar 

  • Ferousi C, Lindhoud S, Baymann F, Kartal B, Jetten M S, Reimann J (2017). Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria. Current Opinion in Chemical Biology, 37: 129–136

    Article  CAS  Google Scholar 

  • Han P, Huang Y T, Lin J G, Gu J D (2013). A comparison of two 16S rRNA gene-based PCR primer sets in unraveling anammox bacteria from different environmental samples. Applied Microbiology and Biotechnology, 97(24): 10521–10529

    Article  CAS  Google Scholar 

  • He Z L, Gentry T J, Schadt C W, Wu L Y, Liebich J, Chong S C, Huang Z J, Wu W M, Gu B H, Jardine P, Criddle C, Zhou J (2007). GeoChip: A comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME Journal, 1 (1): 67–77

    Article  CAS  Google Scholar 

  • Hu B L, Zheng P, Tang C J, Chen J W, Van Der Biezen E, Zhang L, Ni B J, Jetten M S M, Yan J, Yu H Q, Kartal B (2010). Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Research, 44(17): 5014–5020

    Article  CAS  Google Scholar 

  • Huang X L, Gao D W, Peng S, Tao Y (2014). Effects of ferrous and manganese ions on anammox process in sequencing batch biofilm reactors. Journal of Environmental Sciences (China), 26(5): 1034–1039

    Article  CAS  Google Scholar 

  • Li X, Hou L, Liu M, Zheng Y, Yin G, Lin X, Cheng L, Li Y, Hu X (2015). Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environmental Science & Technology, 49(19): 11560–11568

    Article  CAS  Google Scholar 

  • Liu J F, Sun X B, Yang G C, Mbadinga S M, Gu J D, Mu B Z (2015). Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration. Frontiers in Microbiology, 6: 236

    Google Scholar 

  • Liu S T, Horn H (2012). Effects of Fe(II) and Fe(III) on the single-stage deammonification process treating high-strength reject water from sludge dewatering. Bioresource Technology, 114: 12–19

    Article  CAS  Google Scholar 

  • Liu S T, Yang F L, Xue Y, Gong Z, Chen H H, Wang T, Su Z C (2008). Evaluation of oxygen adaptation and identification of functional bacteria composition for anammox consortium in non-woven biological rotating contactor. Bioresource Technology, 99(17): 8273–8279

    Article  CAS  Google Scholar 

  • Liu Y W, Ni B J (2015). Appropriate Fe(II) addition significantly enhances anaerobic ammonium oxidation (anammox) activity through improving the bacterial growth rate. Scientific Reports, 5: 8204

    Article  CAS  Google Scholar 

  • Mak C Y, Lin J G, Chen W H, Ng C A, Bashir M J K (2019). The short-and long-term inhibitory effects of Fe(II) on anaerobic ammonium oxidizing (anammox) process. Water Science and Technology, 79 (10): 1860–1867

    Article  CAS  Google Scholar 

  • Op den Camp H J M, Kartal B, Guven D, van Niftrik L A M P, Haaijer S C M, van der Star W R L, van de Pas-Schoonen K T, Cabezas A, Ying Z, Schmid M C, Kuypers M M M, van de Vossenberg J, Harhangi H R, Picioreanu C, van Loosdrecht M C M, Kuenen J G, Strous M, Jetten M S M. (2006). Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. Biochemical Society Transactions, 34(1): 174–178

    Article  CAS  Google Scholar 

  • Oshiki M, Ishii S, Yoshida K, Fujii N, Ishiguro M, Satoh H, Okabe S (2013). Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria. Applied and Environmental Microbiology, 79(13): 4087–4093

    Article  CAS  Google Scholar 

  • Qiao S, Bi Z, Zhou J T, Cheng Y J, Zhang J (2013). Long term effects of divalent ferrous ion on the activity of anammox biomass. Bioresource Technology, 142: 490–497

    Article  CAS  Google Scholar 

  • Ren Y H, Niu J J, Huang W K, Peng D L, Xiao Y H, Zhang X, Liang Y L, Liu X D, Yin H Q (2016). Comparison of microbial taxonomic and functional shift pattern along contamination gradient. BMC Microbiology, 16: 110

    Article  Google Scholar 

  • Schouten S, Strous M, Kuypers M M M, Rijpstra W I C, Baas M, Schubert C J, Jetten M S M, Damste J S S (2004). Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Applied and Environmental Microbiology, 70(6): 3785–3788

    Article  CAS  Google Scholar 

  • Shu D T, He Y L, Yue H, Yang S C (2016). Effects of Fe(II) on microbial communities, nitrogen transformation pathways and iron cycling in the anammox process: Kinetics, quantitative molecular mechanism and metagenomic analysis. RSC Advances, 6(72): 68005–68016

    Article  CAS  Google Scholar 

  • Strous M, Jetten M S M (2004). Anaerobic oxidation of methane and ammonium. Annual Review of Microbiology, 58(1): 99–117

    Article  CAS  Google Scholar 

  • Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor M W, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh B E, Op Den Camp H J M, Van Der Drift C, Cirpus I, Van De Pas-Schoonen K T, Harhangi H R, Van Niftrik L, Schmid M, Keltjens J, Van De Vossenberg J, Kartal B, Meier H, Frishman D, Huynen M A, Mewes H W, Weissenbach J, Jetten M S M, Wagner M, Le Paslier D (2006). Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 440(7085): 790–794

    Article  Google Scholar 

  • van Niftrik L, Geerts W J C, Van Donselaar E G, Humbel B M, Webb R I, Fuerst J A, Verkleij A J, Jetten M S M, Strous M (2008a). Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: Cell plan, glycogen storage, and localization of cytochrome c proteins. Journal of Bacteriology, 190(2): 708–717

    Article  CAS  Google Scholar 

  • van Niftrik L, Geerts W J C, Van Donselaar E G, Humbel B M, Yakushevska A, Verkleij A J, Jetten M S M, Strous M (2008b). Combined structural and chemical analysis of the anammoxosome: A membrane-bounded intracytoplasmic compartment in anammox bacteria. Journal of Structural Biology, 161(3): 401–410

    Article  CAS  Google Scholar 

  • van Niftrik L, Jetten M S M (2012). Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiology and Molecular Biology Reviews, 76(3): 585–596

    Article  CAS  Google Scholar 

  • Wang Y Y, Ma X, Zhou S, Lin X M, Ma B, Park H D, Yan Y (2016). Expression of the nirS, hzsA, and hdh genes in response to nitrite shock and recovery in Candidatus Kuenenia stuttgartiensis. Environmental Science & Technology, 50(13): 6940–6947

    Article  CAS  Google Scholar 

  • Yang Y F, Xiao C C, Lu J H, Zhang Y B (2020). Fe(III)/Fe(II) forwarding a new anammox-like process to remove high-concentration ammonium using nitrate as terminal electron acceptor. Water Research, 172: 115528

    Article  CAS  Google Scholar 

  • Zhang X, Chen Z, Zhou Y, Ma Y, Ma C, Li Y, Liang Y, Jia J (2019a). Impacts of the heavy metals Cu(II), Zn(II) and Fe(II) on an anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe(II) makes a difference. Science of the Total Environment, 648: 798–804

    Article  CAS  Google Scholar 

  • Zhang X, Zhou Y, Zhao S, Zhang R, Peng Z, Zhai H, Zhang H (2018). Effect of Fe(II) in low-nitrogen sewage on the reactor performance and microbial community of an anammox biofilter. Chemosphere, 200: 412–418

    Article  CAS  Google Scholar 

  • Zhang Y, Wang Y Y, Yan Y, Han H C, Wu M (2019b). Characterization of CANON reactor performance and microbial community shifts with elevated COD/N ratios under a continuous aeration mode. Frontiers of Environmental Science & Engineering, 13(1): 7

    Article  Google Scholar 

  • Zhao J, Zuo J N, Wang X L, Lin J, Yang Y F, Zhou J Z, Chu H J, Li P (2014a). GeoChip-based analysis of microbial community of a combined nitritation-anammox reactor treating anaerobic digestion supernatant. Water Research, 67: 345–354

    Article  CAS  Google Scholar 

  • Zhao R, Zhang H M, Li Y F, Jiang T, Yang F L (2014b). Research of iron reduction and the iron reductase localization of anammox bacteria. Current Microbiology, 69(6): 880–887

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge our colleagues, Guangjing Xu and Jun Gu, for supplying the anammox bacterial inoculums, and thank Joy D. Van Nostrand for comments about the manuscript modification. The authors also appreciate the funding support from Start-up Grant (SUG) Nanyang Technological University, Singapore (M4081483.030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhou.

Additional information

Highlights

• 0.12 mmol/L Fe(II) enhanced the total anammox activity and bacterial abundance best.

• 0.09 mmol/L Fe(II) led to the best performance on relative anammox activity.

• 0.75 mmol/L Fe(II) had an immediate but recoverable inhibition on anammox activity.

• More genes but not relative level were expressed at higher Fe(II) concentration.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Seow, W., Zhou, J. et al. Effects of Fe(II) on anammox community activity and physiologic response. Front. Environ. Sci. Eng. 15, 7 (2021). https://doi.org/10.1007/s11783-020-1299-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-020-1299-9

Keywords

Navigation