Skip to main content
Log in

Magnetotactic bacteria: Characteristics and environmental applications

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Magnetotactic bacteria (MTB) are a group of Gram-negative prokaryotes that respond to the geomagnetic field. This unique property is attributed to the intracellular magnetosomes, which contains membrane-bound nanocrystals of magnetic iron minerals. This review summarizes the most recent advances in MTB, magnetosomes, and their potential applications especially the environmental pollutant control or remediation. The morphologic and phylogenetic diversity of MTB were first introduced, followed by a critical review of isolation and cultivation methods. Researchers have devoted to optimize the factors, such as oxygen, carbon source, nitrogen source, nutrient broth, iron source, and mineral elements for the growth of MTB. Besides the applications of MTB in modern biological and medical fields, little attention was made on the environmental applications of MTB for wastewater treatment, which has been summarized in this review. For example, applications of MTB as adsorbents have resulted in a novel magnetic separation technology for removal of heavy metals or organic pollutants in wastewater. In addition, we summarized the current advance on pathogen removal and detection of endocrine disruptor which can inspire new insights toward sustainable engineering and practices. Finally, the new perspectives and possible directions for future studies are recommended, such as isolation of MTB, genetic modification of MTB for mass production and new environmental applications. The ultimate objective of this review is to promote the applications of MTB and magnetosomes in the environmental fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta-Avalos D, Abreu F (2018). Bacteriology. London: IntechOpen

    Google Scholar 

  • Ali I, Peng C, Khan Z M, Naz I (2017). Yield cultivation of magnetotactic bacteria and magnetosomes: A review. Journal of Basic Microbiology, 57(8): 643–652

    Article  CAS  Google Scholar 

  • Ali I, Peng C, Khan Z M, Naz I, Sultan M (2018). An overview of heavy metal removal from wastewater using magnetotactic bacteria. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 93(10): 2817–2832

    Article  CAS  Google Scholar 

  • Ambashta R D, Sillanpaa M (2010). Water purification using magnetic assistance: A review. Journal of Hazardous Materials, 180(1–3): 38–49

    Article  CAS  Google Scholar 

  • Amor M, Busigny V, Louvat P, Tharaud M, Gelabert A, Cartigny P, Carlut J, Isambert A, Durand-Dubief M, Ona-Nguema G, Alphandery E, Chebbi I, Guyot F (2018). Iron uptake and magnetite biomineralization in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1: An iron isotope study. Geochimica et Cosmochimica Acta, 232: 225–243

    Article  CAS  Google Scholar 

  • Arakaki A, Takeyama H, Tanaka T, Matsunaga T (2002). Cadmium recovery by a sulfate-reducing magnetotactic bacterium, Desulfovibrio magneticus RS-1, using magnetic separation. Applied Biochemistry and Biotechnology, 98–100(1–9): 833–840

    Article  Google Scholar 

  • Bahaj A, Croudace I, James P, Moeschler F, Warwick P (1998). Continuous radionuclide recovery from wastewater using magnetotactic bacteria. Journal of Magnetism and Magnetic Materials, 184(2): 241–244

    Article  CAS  Google Scholar 

  • Bahaj A S, James P, Moeschler F (1997). Continuous cultivation and recovery of magnetotactic bacteria. IEEE Transactions on Magnetics, 33(5): 4263–4265

    Article  Google Scholar 

  • Bahaj A S, James P, Moeschler F (2002). Efficiency enhancements through the use of magnetic field gradient in origntation magnetic separation for the removal of pollutants by magnetotactic bacteria. Separation Science and Technology, 37(16): 3661–3671

    Article  CAS  Google Scholar 

  • Barber-Zucker S, Zarivach R (2017). A look into the biochemistry of magnetosome biosynthesis in magnetotactic bacteria. ACS Chemical Biology, 12(1): 13–22

    Article  CAS  Google Scholar 

  • Bazylinski D A, Frankel R B (2004). Magnetosome formation in prokaryotes. Nature Reviews. Microbiology, 2(3): 217–230

    Article  CAS  Google Scholar 

  • Bazylinski D A, Lefèvre C T, Lower B H (2014). Nanomicrobiology. New York: Springer

    Google Scholar 

  • Bazylinski D A, Schubbe S (2007). Controlled biomineralization by and applications of magnetotactic bacteria. Advances in Applied Microbiology, 62(7): 21–62

    Article  CAS  Google Scholar 

  • Bender P, Marcano L, Orue I, Venero A D, Honecker D, Barquí N F N L, Muela A, Fdez-Gubieda M L (2019). Probing the stability and magnetic properties of magnetosome chains in freeze-dried magne-totactic bacteria. arXiv preprint arXiv: 1904.10732

    Google Scholar 

  • Blondeau M, Guyodo Y, Guyot F, Gatel C, Menguy N, Chebbi I, Haye B, Durand-Dubief M, Alphandéry E, Brayner R (2018). Magneticfield induced rotation of magnetosome chains in silicified magnetotactic bacteria. Scientific Reports, 8(1): 1–9

    Article  CAS  Google Scholar 

  • Cai F, Li J, Sun J, Ji Y (2011). Biosynthesis of gold nanoparticles by biosorption using Magnetospirillum gryphiswaldense MSR-1. Chemical Engineering Journal, 175: 70–75

    Article  CAS  Google Scholar 

  • Chandrajit S, Prakash G (2011). Preliminary isolation report of aerobic magnetotactic bacteria in a modified nutrient medium. Recent Research in Science and Technology, 3(11): 71–75

    Google Scholar 

  • Chen C, Ma Q, Jiang W, Song T (2011). Phototaxis in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1 is independent of magnetic fields. Applied Microbiology and Biotechnology, 90(1): 269–275

    Article  CAS  Google Scholar 

  • Chen L, Chen C, Wang P, Chen C, Wu L, Song T (2017). A compound magnetic field generating system for targeted killing of Staphylococcus aureus by magnetotactic bacteria in a microfluidic chip. Journal of Magnetism and Magnetic Materials, 427: 90–94

    Article  CAS  Google Scholar 

  • Chen L J, Bazylinski D A, Brian H (2012). Bacteria that synthesize nano-sized compasses to navigate using earth's geomagnetic field. Nature Education Knowledge, 3(10): 30

    Google Scholar 

  • de Castro Alves L, Yáñez-Vilar S, Piñeiro-Redondo Y, Rivas J (2019). Novel magnetic nanostructured beads for cadmium (II) removal. Nanomaterials (Basel, Switzerland), 9(3): 356

    Article  CAS  Google Scholar 

  • Descamps E C, Abbé J B, Pignol D, Lefèvre C T (2016). Controlled biomineralization of magnetite in bacteria. Iron Oxides. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 99–116

    Google Scholar 

  • Diaz-Alarcón J A, Alfonso-Pérez M P, Vergara-Gómez I, Díaz-Lagos M, Martínez-Ovalle S A (2019). Removal of iron and manganese in groundwater through magnetotactic bacteria. Journal of Environmental Management, 249: 109381

    Article  CAS  Google Scholar 

  • Dieudonné A, Pignol D, Prévéral S (2019). Magnetosomes: Biogenic iron nanoparticles produced by environmental bacteria. Applied Microbiology and Biotechnology, 103(9): 3637–3649

    Article  CAS  Google Scholar 

  • Faivre D, Schuler D (2008). Magnetotactic bacteria and magnetosomes. Chemical Reviews, 108(11): 4875–4898

    Article  CAS  Google Scholar 

  • Farzan F, Shojaosadati S A, Abdul Tehrani H (2010). A preliminary report on the isolation and identification of magnetotactic bacteria from Iran environment. Iranian Journal of Biotechnology, 8(2): 98–102

    Google Scholar 

  • Firlar E, Ouy M, Bogdanowicz A, Covnot L, Song B, Nadkarni Y, Shahbazian-Yassar R, Shokuhfar T (2019). Investigation of the magnetosome biomineralization in magnetotactic bacteria using graphene liquid cell- transmission electron microscopy. Nanoscale, 11(2): 698–705

    Article  CAS  Google Scholar 

  • Ghaisari S, Winklhofer M, Strauch P, Klumpp S, Faivre D (2017). Magnetosome organization in magnetotactic bacteria unraveled by ferromagnetic resonance spectroscopy. Biophysical Journal, 113(3): 637–644

    Article  CAS  Google Scholar 

  • Ginet N, Pardoux R, Adryanczyk G, Garcia D, Brutesco C, Pignol D (2011). Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One, 6(6): e21442

    Article  CAS  Google Scholar 

  • Heslop D, Roberts A P, Chang L, Davies M, Abrajevitch A, De Deckker P (2013). Quantifying magnetite magnetofossil contributions to sedimentary magnetizations. Earth and Planetary Science Letters, 382: 58–65

    Article  CAS  Google Scholar 

  • Heyen U, Schuler D (2003). Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Applied Microbiology and Biotechnology, 61(5–6): 536–544

    Article  CAS  Google Scholar 

  • Honda T, Tanaka T, Yoshino T (2015). Stoichiometrically controlled immobilization of multiple enzymes on magnetic nanoparticles by the magnetosome display system for efficient cellulose hydrolysis. Biomacromolecules, 16(12): 3863–3868

    Article  CAS  Google Scholar 

  • Islam T, Peng C, Ali I (2018). Morphological and cellular diversity of magnetotactic bacteria: A review. Journal of Basic Microbiology, 58(5): 378–389

    Article  Google Scholar 

  • Jacob J J, Suthindhiran K (2016). Magnetotactic bacteria and magnetosomes- Scope and challenges. Materials Science and Engineering C, 68: 919–928

    Article  CAS  Google Scholar 

  • Jiang Y, Xi B, Li R, Li M, Xu Z, Yang Y, Gao S (2019). Advances in Fe (III) bioreduction and its application prospect for groundwater remediation: A review. Frontiers of Environmental Science & Engineering, 13(6): 89

    Article  CAS  Google Scholar 

  • Jogler C, Niebler M, Lin W, Kube M, Wanner G, Kolinko S, Stief P, Beck A J, De Beer D, Petersen N, Pan Y, Amann R, Reinhardt R, Schuler D (2010). Cultivation-independent characterization of ‘Candidatus Magnetobacterium bavaricum’ via ultrastructural, geochemical, ecological and metagenomic methods. Environmental Microbiology, 12(9): 2466–2478

    Article  CAS  Google Scholar 

  • Ke L, Chen Y, Liu P, Liu S, Wu D, Yuan Y, Wu Y, Gao M (2018). Characteristics and optimized fermentation of a novel magnetotactic bacterium, Magnetospirillum sp. ME-1. FEMS Microbiology Letters, 365(14): 1–9

    Google Scholar 

  • Keim C N, Lins U, Farina M (2009). Manganese in biogenic magnetite crystals from magnetotactic bacteria. FEMS Microbiology Letters, 292(2): 250–253

    Article  CAS  Google Scholar 

  • Kiran M G, Pakshirajan K, Das G (2018). Metallic wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor under high metal loading conditions. Frontiers of Environmental Science & Engineering, 12(4): 12

    Article  CAS  Google Scholar 

  • Körnig A, Dong J, Bennet M, Widdrat M, Andert J, Müller F D, Schüler D, Klumpp S, Faivre D (2014). Probing the mechanical properties of magnetosome chains in living magnetotactic bacteria. Nano Letters, 14(8): 4653–4659

    Article  CAS  Google Scholar 

  • Kundu S, Kulkarni G R (2010). Enhancement of magnetotactic bacterial yield in a modified MSGM medium without alteration of magnetosomes properties. Indian Journal of Experimental Biology, 48(5): 518–523

    Google Scholar 

  • Lefèvre C T, Bazylinski D A (2013). Magnetotactic bacteria: Ecology, diversity and evolution. Microbiology and Molecular Biology Reviews, 77(3): 497–526

    Article  CAS  Google Scholar 

  • Lefèvre C T, Menguy N, Abreu F, Lins U, Pósfai M, Prozorov T, Pignol D, Frankel R B, Bazylinski D A (2011). A cultured greigite-producing magnetotactic bacterium in a novel group of sulfatereducing bacteria. Science, 334(6063): 1720–1723

    Article  CAS  Google Scholar 

  • Lefèvre C T, Wu L F (2013). Evolution of the bacterial organelle responsible for magnetotaxis. Trends in Microbiology, 21(10): 534–543

    Article  CAS  Google Scholar 

  • Li T, Xiao K, Yang B, Peng G, Liu F, Tao L, Chen S, Wei H, Yu G, Deng S (2019). Recovery of Ni (II) from real electroplating wastewater using fixed-bed resin adsorption and subsequent electrodeposition. Frontiers of Environmental Science & Engineering, 13(6): 91

    Article  CAS  Google Scholar 

  • Lin W, Pan Y, Bazylinski D A (2017). Diversity and ecology of and biomineralization by magnetotactic bacteria. Environmental Microbiology Reports, 9(4): 345–356

    Article  CAS  Google Scholar 

  • Lin W, Wang Y, Pan Y (2012). Short-term effects of temperature on the abundance and diversity of magnetotactic cocci. MicrobiologyOpen, 1(1): 53–63

    Article  CAS  Google Scholar 

  • Liu L, Bilal M, Duan X, Iqbal H M N (2019). Mitigation of environmental pollution by genetically engineered bacteria- Current challenges and future perspectives. Science of the Total Environment, 667: 444–454

    Article  CAS  Google Scholar 

  • Liu S, Wiatrowski H A (2018). Reduction of Hg(II) to Hg(0) by biogenic magnetite from two magnetotactic bacteria. Geomicrobiology Journal, 35(3): 198–208

    Article  CAS  Google Scholar 

  • Liu Y, Li G R, Guo F F, Jiang W, Li Y, Li L J (2010). Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microbial Cell Factories, 9(1): 99

    Article  CAS  Google Scholar 

  • Mathuriya A S, Yadav K, Kaushik B D (2015). Magnetotactic bacteria: Performances and bhallenges. Geomicrobiology Journal, 32(9): 780–788

    Article  Google Scholar 

  • Murat D, Quinlan A, Vali H, Komeili A (2010). Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proceedings of the National Academy of Sciences of the United States of America, 107(12): 5593–5598

    Article  CAS  Google Scholar 

  • Nguyen C C, Hugie C N, Kile M L, Navab-Daneshmand T (2019). Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review. Frontiers of Environmental Science & Engineering, 13(3): 46

    Article  CAS  Google Scholar 

  • Parisi F, Lazzara G, Merli M, Milioto S, Princivalle F, Sciascia L (2019). Simultaneous removal and recovery of metal ions and dyes from wastewater through montmorillonite clay minera. Nanomaterials (Basel, Switzerland), 9(12): 1699

    Article  CAS  Google Scholar 

  • Prabhu N N, Kowshik M (2016). Techniques for the isolation of magnetotactic bacteria. Journal of Microbial & Biochemical Technology, 8(3):188–194

    Article  CAS  Google Scholar 

  • Qu Y, Zhang X, Xu J, Zhang W, Guo Y (2014). Removal of hexavalent chromium from wastewater using magnetotactic bacteria. Separation and Purification Technology, 136: 10–17

    Article  CAS  Google Scholar 

  • Ranjan B, Pillai S, Permaul K, Singh S (2019). Simultaneous removal of heavy metals and cyanate in a wastewater sample using immobilized cyanate hydratase on magnetic-multiwall carbon nanotubes. Journal of Hazardous Materials, 363: 73–80

    Article  CAS  Google Scholar 

  • Safarik I, Ptackova L, Safarikova M (2002). Adsorption of dyes on magnetically labeled baker's yeast cells. European Cells & Materials, 3: 52–55

    Google Scholar 

  • Šafaříková M, Ptackova L, Kibrikova I, Safarik I (2005). Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells. Chemosphere, 59(6): 831–835

    Article  CAS  Google Scholar 

  • Sannigrahi S, Suthindhiran K (2019). Metal recovery from printed circuit boards by magnetotactic bacteria. Hydrometallurgy, 187: 113–124

    Article  CAS  Google Scholar 

  • Shi Y, Chai L, Yang Z, Jing Q, Chen R, Chen Y (2012). Identification and hexavalent chromium reduction characteristics of Pannonibacter phragmitetus. Bioprocess and Biosystems Engineering, 35(5): 843–850

    Article  CAS  Google Scholar 

  • Simmons S L, Bazylinski D A, Edwards K J (2006). South-seeking magnetotactic bacteria in the Northern Hemisphere. Science, 311(5759): 371–374

    Article  CAS  Google Scholar 

  • Singh J, Chang Y Y, Yang J K, Kang S H, Koduru J R (2016). Utilization of nano/micro-size iron recovered from the fine fraction of automobile shredder residue for phenol degradation in water. Frontiers of Environmental Science & Engineering, 10(4): 9

    Article  CAS  Google Scholar 

  • Song H, Li X, Cheng H, Cheng F (2013). Theoretical and experimental study of Au(III)-containing wastewater treatment using magnetotactic bacteria. Desalination and Water Treatment, 51(19–21): 3864–3870

    CAS  Google Scholar 

  • Song H, Li X, Sun J, Xu S, Han X (2008). Application of a magnetotactic bacterium, Stenotrophomonas sp to the removal of Au(III) from contaminated wastewater with a magnetic separator. Chemosphere, 72(4): 616–621

    Article  CAS  Google Scholar 

  • Song H, Li X, Sun J, Yin X, Wang Y, Wu Z (2007). Biosorption equilibrium and kinetics of Au(III) and Cu(II) on magnetotactic Bacteria. Chinese Journal of Chemical Engineering, 15(6): 847–854

    Article  CAS  Google Scholar 

  • Stanton M M, Park B W, Vilela D, Bente K, Faivre D, Sitti M, Sanchez S (2017). Magnetotactic bacteria powered biohybrids target E. coli biofilms. ACS Nano, 11(10): 9968–9978

    Article  CAS  Google Scholar 

  • Tajer-Mohammad-Ghazvini P, Kasra-Kermanshahi R, Nozad-Golikand A, Sadeghizadeh M, Ghorbanzadeh-Mashkani S, Dabbagh R (2016). Cobalt separation by Alphaproteobacterium MTB-KTN90: Magnetotactic bacteria in bioremediation. Bioprocess and Biosystems Engineering, 39(12): 1899–1911

    Article  CAS  Google Scholar 

  • Tanaka M, Arakaki A, Staniland S S, Matsunaga T (2010). Simultaneously discrete biomineralization of magnetite and tellurium nanocrystals in magnetotactic bacteria. Applied Microbiology and Biotechnology, 76(16): 5526–5532

    CAS  Google Scholar 

  • Tanaka M, Kawase M, Tanaka T, Matsunaga T (2009). Gold biorecovery from plating waste by magnetotactic bacterium, Magnetospirillum magneticum AMB-1. Online Proceeding Library Archive, 1169: 1169–Q03–12

    Google Scholar 

  • Tanaka M, Knowles W, Brown R, Hondow N, Arakaki A, Baldwin S, Staniland S, Matsunaga T (2016). Biomagnetic recovery and bioaccumulation of selenium granules in magnetotactic bacteria. Applied Microbiology and Biotechnology, 82(13): 3886–3891

    CAS  Google Scholar 

  • Tanaka M, Nakata Y, Mori T, Okamura Y, Miyasaka H, Takeyama H, Matsunaga T (2008). Development of a cell surface display system in a magnetotactic bacterium, “Magnetospirillum magneticum” AMB-1. Applied and Environmental Microbiology, 74(11): 3342–3348

    Article  CAS  Google Scholar 

  • Tanaka T, Takeda H, Ueki F, Obata K, Tajima H, Takeyama H, Goda Y, Fujimoto S, Matsunaga T (2004). Rapid and sensitive detection of 17β-estradiol in environmental water using automated immunoassay system with bacterial magnetic particles. Journal of Biotechnology, 108(2): 153–159

    Article  CAS  Google Scholar 

  • Toro-Nahuelpan M, Giacomelli G, Raschdorf O, Borg S, Plitzko J M, Bramkamp M, Schüler D, Müller F D (2019). MamY is a membranebound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nature Microbiology, 4(11): 1978–1989

    Article  CAS  Google Scholar 

  • Uebe R, Schüler D (2016). Magnetosome biogenesis in magnetotactic bacteria. Nature Reviews. Microbiology, 14(10): 621–637

    Article  CAS  Google Scholar 

  • Vargas G, Cypriano J, Correa T, Leão P, Bazylinski D A, Abreu F (2018). Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: Mini-review. Molecules (Basel, Switzerland), 23(10): 2438

    Article  CAS  Google Scholar 

  • Wang J, Zhuang S (2019). Removal of cesium ions from aqueous solutions using various separation technologies. Reviews in Environmental Science and Biotechnology, 18(2): 231–269

    Article  CAS  Google Scholar 

  • Wang M, Liu P, Wang Y, Zhou D, Ma C, Zhang D, Zhan J (2015). Coreshell superparamagnetic Fe3O4@beta-CD composites for host-guest adsorption of polychlorinated biphenyls (PCBs). Journal of Colloid and Interface Science, 447: 1–7

    Article  CAS  Google Scholar 

  • Wang Y, Gao H, Sun J, Li J, Su Y, Ji Y, Gong C (2011). Selective reinforced competitive biosorption of Ag(I) and Cu(II) on Magnetospirillum gryphiswaldense. Desalination, 270(1–3): 258–263

    Article  CAS  Google Scholar 

  • Wang Y H, Sun J S (2005). Biosorption of heavy metal ions by activated sludge cultivated with culture medium of MTB. Chinese Journal of Chemical Engineering, 22(4): 255–258

    CAS  Google Scholar 

  • Yan L, Da H, Zhang S, López V M, Wang W (2017). Bacterial magnetosome and its potential application. Microbiological Research, 203: 19–28

    Article  CAS  Google Scholar 

  • Yan L, Zhang S, Chen P, Liu H, Yin H, Li H (2012). Magnetotactic bacteria, magnetosomes and their application. Microbiological Research, 167(9): 507–519

    Article  CAS  Google Scholar 

  • Yan L, Zhang S, Chen P, Wang W, Wang Y, Li H (2013). Magnetic properties of Acidithiobacillus ferrooxidans. Materials Science and Engineering C, 33(7): 4026–4031

    Article  CAS  Google Scholar 

  • Yang C D, Takeyama H, Tanaka T, Matsunaga T (2001). Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzyme and Microbial Technology, 29(1): 13–19

    Article  CAS  Google Scholar 

  • Yang H, Liu J, Yang J (2011). Leaching copper from shredded particles of waste printed circuit boards. Journal of Hazardous Materials, 187(1–3): 393–400

    Article  CAS  Google Scholar 

  • Yang J, Lei M, Chen T, Gao D, Zheng G, Guo G, Lee D (2014). Current status and developing trends of the contents of heavy metals in sewage sludges in China. Frontiers of Environmental Science & Engineering, 8(5): 719–728

    Article  CAS  Google Scholar 

  • Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok Y S, Jiang Y, Gao B (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal, 366: 608–621

    Article  CAS  Google Scholar 

  • Yazdi S R, Nosrati R, Stevens C A, Vogel D, Davies P L, Escobedo C (2018). Magnetotaxis enables magnetotactic bacteria to navigate in flow. Small, 14(5): 1702982

    Article  CAS  Google Scholar 

  • Zeytuni N, Ozyamak E, Ben-Harush K, Davidov G, Levin M, Gat Y, Moyal T, Brik A, Komeili A, Zarivach R (2011). Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proceedings of the National Academy of Sciences of the United States of America, 108(33): E480–E487

    Article  CAS  Google Scholar 

  • Zhou W, Zhang Y, Ding X, Liu Y, Shen F, Zhang X, Deng S, Xiao H, Yang G, Peng H (2012). Magnetotactic bacteria: Promising biosorbents for heavy metals. Applied Microbiology and Biotechnology, 95(5): 1097–1104

    Article  CAS  Google Scholar 

  • Zhou Y, Lisowski W, Zhou Y, Jern N W, Huang K, Fong E (2017). Genetic improvement of Magnetospirillum gryphiswaldense for enhanced biological removal of phosphate. Biotechnology Letters, 39(10): 1509–1514

    Article  CAS  Google Scholar 

  • Zhu X, Hitchcock A P, Le Nagard L, Bazylinski D A, Morillo V, Abreu F, Leao P, Lins U (2018). X-ray absorption spectroscopy and magnetism of synthetic greigite and greigite magnetosomes in magnetotactic bacteria. Geomicrobiology Journal, 35(3): 215–226

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 21677015), the Innovative Research Group of the National Natural Science Foundation of China (No. 51721093), and the US national science foundation (No. 1756444) via Biological & Environmental Interfaces of Nano Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li or Wen Zhang.

Additional information

Highlights

• Magnetotactic bacteria (MTB) synthesize magnetic nanoparticle within magnetosomes.

• The morphologic and phylogenetic diversity of MTB were summarized.

• Isolation and mass cultivation of MTB deserve extensive research for applications.

• MTB can remove heavy metals, radionuclides, and organic pollutants from wastewater.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, Y., Zhao, J. et al. Magnetotactic bacteria: Characteristics and environmental applications. Front. Environ. Sci. Eng. 14, 56 (2020). https://doi.org/10.1007/s11783-020-1235-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-020-1235-z

Keywords

Navigation