Skip to main content
Log in

Characterization of the genes involved in nitrogen cycling in wastewater treatment plants using DNA microarray and most probable number-PCR

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

To improve nitrogen removal performance of wastewater treatment plants (WWTPs), it is essential to understand the behavior of nitrogen cycling communities, which comprise various microorganisms. This study characterized the quantity and diversity of nitrogen cycling genes in various processes of municipal WWTPs by employing two molecular-based methods:most probable number-polymerase chain reaction (MPN-PCR) and DNA microarray. MPN-PCR analysis revealed that gene quantities were not statistically different among processes, suggesting that conventional activated sludge processes (CAS) are similar to nitrogen removal processes in their ability to retain an adequate population of nitrogen cycling microorganisms. Furthermore, most processes in the WWTPs that were researched shared a pattern:the nirS and the bacterial amoA genes were more abundant than the nirK and archaeal amoA genes, respectively. DNA microarray analysis revealed that several kinds of nitrification and denitrification genes were detected in both CAS and anaerobic-oxic processes (AO), whereas limited genes were detected in nitrogen removal processes. Results of this study suggest that CAS maintains a diverse community of nitrogen cycling microorganisms; moreover, the microbial communities in nitrogen removal processes may be specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith V H, Tilman G D, Nekola J C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 1999, 100(1-3): 179–196

    Article  CAS  Google Scholar 

  2. Ahn Y H. Sustainable nitrogen elimination biotechnologies: a review. Process Biochemistry, 2006, 41(8): 1709–1721

    Article  CAS  Google Scholar 

  3. Richardson D J, Watmough N J. Inorganic nitrogen metabolism in bacteria. Current Opinion in Chemical Biology, 1999, 3(2): 207–219

    Article  CAS  Google Scholar 

  4. Zhu G B, Peng Y Z, Li B K, Guo J H, Yang Q, Wang S Y. Biological removal of nitrogen from wastewater. Reviews of Environmental Contamination and Toxicology, 2008, 192: 159–195

    CAS  Google Scholar 

  5. Song B, Tobias C R. Molecular and stable isotope methods to detect and measure anaerobic ammonium oxidation (anammox) in aquatic ecosystems. Methods in Enzymology, 2011, 496: 63–89

    Article  CAS  Google Scholar 

  6. Kampschreur M J, Temmink H, Kleerebezem R, Jetten M S M, van Loosdrecht C M. Nitrous oxide emission during wastewater treatment. Water Research, 2009, 43(17): 4093–4103

    Article  CAS  Google Scholar 

  7. Soda S, Arai T, Inoue D, Ishigaki T, Ike M, Yamada M. Statistical analysis of global warming potential, eutrophication potential, and sludge production of wastewater treatment in Japan. Journal of Sustainable Energy and Environment, 2013, 4(1): 33–40

    Google Scholar 

  8. Amann R I, Ludwing W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 1995, 59(1): 143–169

    CAS  Google Scholar 

  9. Prosser J I, Embley T M. Cultivation-based and molecular approaches to characterization of terrestrial and aquatic nitrifiers. Antonie van Leeuwenhoek, 2002, 81(1): 165–179

    Article  CAS  Google Scholar 

  10. Smith C J, Osborn A M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiology Ecology, 2009, 67(1): 6–20

    Article  CAS  Google Scholar 

  11. He Z, Deng Y, Zhou J. Development of functional gene microarrays for microbial community analysis. Current Opinion in Biotechnology, 2012, 23(1): 49–55

    Article  CAS  Google Scholar 

  12. Inoue D, Pang J, Matsuda M, Sei K, Nishida K, Ike M. Development of a whole community genome amplification-assisted DNA microarray method to detect functional genes involved in the nitrogen cycle. World Journal of Microbiology & Biotechnology, 2014, 30(11): 2907–2915

    Article  CAS  Google Scholar 

  13. Hashimoto K, Matsuda M, Inoue D, Ike M. Bacterial community dynamics in a full-scale municipal wastewater treatment plant employing conventional activated sludge process. Journal of Bioscience and Bioengineering, 2014, 118(1): 64–71

    Article  CAS  Google Scholar 

  14. Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M. Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiology Ecology, 2000, 32(2): 129–141

    Article  CAS  Google Scholar 

  15. Rotthauwe J H, de Boe W, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997, 63(12): 4704–4712

    CAS  Google Scholar 

  16. Sang N, Soda S, Sei K, Ike M. Effect of aeration on stabilization of organic solid waste and microbial population dynamics in lab-scale landfill bioreactors. Journal of Bioscience and Bioengineering, 2008, 106(5): 425–432

    Article  CAS  Google Scholar 

  17. Francis C A, Roberts K J, Michael J, Santoro A E, Oakley B B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 (41): 16683–14688

    Article  Google Scholar 

  18. Wu L, Thompson D K, Li G, Hurt R A, Tiedje J M, Zhou J. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Applied and Environmental Microbiology, 2001, 67(12): 5780–5790

    Article  CAS  Google Scholar 

  19. Wu L, Liu X, Christopher W S, Zhou J. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole community genome amplification. Applied and Environmental Microbiology, 2006, 72(7): 4931–4941

    Article  CAS  Google Scholar 

  20. Geets J, de Cooman M, Wittebolle L, Heylen K, Vanparys B, de Vos P, Verstraete W, Boon N. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Applied Microbiology and Biotechnology, 2007, 75(1): 211–221

    Article  CAS  Google Scholar 

  21. Wang Z, Zhang X X, Lu X, Liu B, Li Y, Long C, Li A. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing. PLoS ONE, 2014, 9(11): e113603

    Article  Google Scholar 

  22. Shu D, He Y, Yue H, Wang Q. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing. Bioresource Technology, 2015, 186: 163–172

    Article  CAS  Google Scholar 

  23. Daims H, Wagner M. The microbiology of nitrogen removal. In: Seviour RJ, Nielsen PH, eds. Microbial Ecology of Activated Sludge. London: IWA Publishing, 2010,259–280

    Google Scholar 

  24. Kayee P, Sonthiphand P, Rongsayamanont C, Limpiyakorn T. Archaeal amoA genes outnumber bacterial amoA genes in municipal wastewater treatment plants in Bangkok. Microbial Ecology, 2011, 62(4): 776–788

    Article  Google Scholar 

  25. Limpiyakorn T, Sonthiphand P, Rongsayamanont C, Polprasert C. Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresource Technology, 2011, 102(4): 3694–3701

    Article  CAS  Google Scholar 

  26. Wu Y J, Whang L M, Fukushima T, Chang S H. Responses of ammonia-oxidizing archaeal and betaproteobacterial populations to wastewater salinity in a full-scale municipal wastewater treatment plant. Journal of Bioscience and Bioengineering, 2013, 115(4): 424–432

    Article  CAS  Google Scholar 

  27. Burgin A J, Hamilton S K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment, 2007, 5(2): 89–96

    Article  Google Scholar 

  28. Kraft B, Strous M, Tegetmeyer H E. Microbial nitrate respiration— genes, enzymes and environmental distribution. Journal of Biotechnology, 2011, 155(1): 104–117

    Article  CAS  Google Scholar 

  29. Rütting T, Boeckx P, Müller C, Klemedtsson L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences, 2011, 8(7): 1779–1791

    Article  Google Scholar 

  30. van den Berg E M, van Dongen U, Abbas B, van Loosdrecht M C M. Enrichment of DNRA bacteria in a continuous culture. ISME Journal, 2015, 9(10): 2153–2161

    Article  Google Scholar 

  31. Strous M, van Gerven E, Kuenen J G, Jetten M. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Applied and Environmental Microbiology, 1997, 63(6): 2446–2448

    CAS  Google Scholar 

  32. Matsuda M, Inoue D, Anami Y, Tsutsui H, Sei K, Soda S, Ike M. Comparative analysis of DNA-based microbial community composition and substrate utilisation patterns of activated sludge microorganisms from wastewater treatment plants operated under different conditions. Water Science and Technology, 2010, 61(11): 2843–2851

    Article  CAS  Google Scholar 

  33. Takada K, Hashimoto K, Soda S, Ike M, Yamashita K, Hashimoto T. Characterization of microbial community in membrane bioreactors treating domestic wastewater. Journal of Water and Environment Technology, 2014, 12(2): 99–107

    Article  Google Scholar 

  34. Ma Q, Qu Y, Shen W, Zhang Z, Wang J, Liu Z, Li D, Li H, Zhou J. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresource Technology, 2015, 179: 436–443

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihiko Ike.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, J., Matsuda, M., Kuroda, M. et al. Characterization of the genes involved in nitrogen cycling in wastewater treatment plants using DNA microarray and most probable number-PCR. Front. Environ. Sci. Eng. 10, 7 (2016). https://doi.org/10.1007/s11783-016-0846-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-016-0846-x

Keywords

Navigation