Skip to main content
Log in

Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and antraquinonic dyes

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Nanosized magnetite has emerged as an adsorbent of pollutants in water remediation. Nanoadsorbents include magnetic iron oxide and its modifiers/stabilizers, such as carbon, silica, clay, organic moieties (polymers, aminoacids, and fatty acids) and other inorganic oxides. This review is focused on the recent developments on the synthesis and use of magnetic nanoparticles and nanocomposites in the treatment of contaminated water. The emphasis is on the influence of the iron oxide modifiers on some properties of interest such as size, BETarea, and magnetization. The characteristics of these nanomaterials are related to their ability to eliminate heavy metal ions and dyes from wastewater. Comparative analysis of the actual literature was performed aiming to present the magnetic material, its preparation methodology and performance in the elimination of the selected pollutants. Vast information has been properly summarized according to the materials, their properties and preferential affinity for selected contaminants. The mechanisms governing nanomaterial’s formation as well as the interactions with heavy metals and dyes have been carefully analyzed and associated to their efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Järup L. Hazards of heavy metal contamination. British Medical Bulletin, 2003, 68(1): 167–182

    Article  Google Scholar 

  2. Duruibe J O, Ogwuegbu M O C, Egwurugwu J N. Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2007, 2(5): 112–118

    Google Scholar 

  3. Dasgupta J, Sikder J, Chakraborty S, Curcio S, Drioli E. Remediation of textile effluents by membrane based treatment techniques: a state of the art review. Journal of Environmental Management, 2015, 147: 55–72

    Article  CAS  Google Scholar 

  4. Hashim M A, Mukhopadhyay S, Sahu J N, Sengupta B. Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 2011, 92(10): 2355–2388

    Article  CAS  Google Scholar 

  5. Aziz H A, Adlan M N, Ariffin K S. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresource Technology, 2008, 99(6): 1578–1583

    Article  CAS  Google Scholar 

  6. Kurniawan T A, Chan G Y, Lo W H, Babel S. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Science of the Total Environment, 2006, 366(2–3): 409–426

    Article  CAS  Google Scholar 

  7. Pandipriya J, Praveena E, Reenu M K, Suganiya J A M, Magthelin T, Nandhitha N M. An insight into the selection of nano particle for removing contaminants in waste water. Journal of Engineering Research and Applications. 2014, 4(1): 203–208

    Google Scholar 

  8. Ali I. New generation adsorbents for water treatment. Chemical Reviews, 2012, 112(10): 5073–5091

    Article  CAS  Google Scholar 

  9. Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chemical Society Reviews, 2013, 42(14): 6060–6093

    Article  CAS  Google Scholar 

  10. Chen Z, Yin J J, Zhou Y T, Zhang Y, Song L, Song M, Hu S, Gu N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano, 2012, 6(5): 4001–4012

    Article  CAS  Google Scholar 

  11. Khajeh M, Laurent S, Dastafkan K. Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chemical Reviews, 2013, 113(10): 7728–7768

    Article  CAS  Google Scholar 

  12. Baldrian P, Merhautova V, Gabriel J, Nerud F, Stopka P, Hruby M, Benes M J. Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides. Applied Catalysis B: Environmental, 2006, 66(3–4): 258–264

    Article  CAS  Google Scholar 

  13. Asghar A, Raman A A A,Wan Daud M A W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal of Cleaner Production, 2015, 87(4): 826–838

    Article  CAS  Google Scholar 

  14. Giraldo L, Erto A, Moreno-Piraján J C. Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption, 2013, 19(2–4): 465–474

    Article  CAS  Google Scholar 

  15. Shen L, Qiao Y, Guon Y, Meng S, Yang G, Wu M, Zhao J. Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceramics International, 2014, 40(1): 1519–1524

    Article  CAS  Google Scholar 

  16. Lassalle V L, Avena M, Ferreira M L. A review of the methods of magnetic nanocomposites synthesis and their applications as drug delivery systems and immobilization supports for lipases. Current Trends in Polymer Science, 2009, 13(3): 37–67

    CAS  Google Scholar 

  17. Lin Y F, Chen J L, Xu C Y, Chung T W. One-pot synthesis of paramagnetic iron(III) hydroxide nanoplates and ferrimagnetic magnetite nanoparticles for the removal of arsenic ions. Chemical Engineering Journal, 2014, 250(1): 409–415

    Article  CAS  Google Scholar 

  18. Florini N, Barrera G, Tiberto P, Allia P, Bondioli F. Nonaqueous Sol–Gel Synthesis of Magnetic Iron Oxides Nanocrystals. Journal of the American Ceramic Society, 2013, 96(2): 3169–3175

    CAS  Google Scholar 

  19. Bastami T R, Entezari M H. High stable suspension of magnetite nanoparticles in ethanol by using sono-synthesized nanomagnetite in polyol medium. Materials Research Bulletin, 2013, 48(9): 3149–3156

    Article  CAS  Google Scholar 

  20. Shen Y F, Tang J, Nie Z H, Wang Y D, Ren Y, Zuo L. Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Separation and Purification Technology, 2009, 68(3): 312–319

    Article  CAS  Google Scholar 

  21. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 2012, 211–212: 317–331

    Article  CAS  Google Scholar 

  22. Shen Y F, Tang J, Nie Z H, Wang Y D, Ren Y, Zuo L. Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water. Bioresource Technology, 2009, 100(18): 4139–4146

    Article  CAS  Google Scholar 

  23. Jia Y, Yu X Y, Luo T, Zhang M Y, Liu J H, Huang X J. Two-step self-assembly of iron oxide into three-dimensional hollow magnetic porous microspheres and their toxic ion adsorption mechanism. Dalton Transactions (Cambridge, England), 2013, 42(5): 1921–1928

    Article  CAS  Google Scholar 

  24. Mayo J T, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin V L. The effect of nanocrystalline magnetite size on arsenic removal. Science and Technology of Advanced Materials, 2007, 8(1–2): 71–75

    Article  CAS  Google Scholar 

  25. Luther S, Borgfeld N, Kim J, Parsons J G. Removal of arsenic from aqueous solution: A study of the effects of pH and interfering ions using iron oxide nanomaterials. Microchemical Journal, 2012, 101(5): 30–36

    Article  CAS  Google Scholar 

  26. Zhong L S, Hu J S, Liang H P, Cao A M, Song WG, Wan L J. Selfassembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Advanced Materials, 2006, 18(18): 2426–2431

    Article  CAS  Google Scholar 

  27. Kilianová M, Prucek R, Filip J, Kolarík J, Kvítek L, Panácek A, Tucek J, Zboril R. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Chemosphere, 2013, 93(11): 2690–2697

    Article  CAS  Google Scholar 

  28. Yuan P, Liu D, Fan M, Yang D, Zhu R, Ge F, Zhu J, He H. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. Journal of Hazardous Materials, 2010, 173(1–3): 614–621

    Article  CAS  Google Scholar 

  29. Wang T, Jin X, Chen Z, Megharaj M, Naidu R. Simultane ous removal of Pb(II) and Cr(III) by magnetite nanoparticles using various synthesis conditions. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3543–3549

    Article  CAS  Google Scholar 

  30. Parsons J G, Hernandez J, Gonzalez C M, Gardea-Torresdey J L. Sorption of Cr(III) and Cr(VI) to high and low pressure synthetic nano-magnetite (Fe3O4) particles. Chemical Engineering Journal, 2014, 254(3): 171–180

    Article  CAS  Google Scholar 

  31. Linnikov O, Rodina I, Shevchenko V, Medvedeva I, Uimin M, Schegoleva N, Yermakov A, Platonov V, Osipov V. Removal of Cr (VI) from aqueous solutions by magnetite nanoparticles with different sizes and crystal structure. Desalination and Water Treatment, 2014, 52(1–3): 324–330

    Article  CAS  Google Scholar 

  32. Nassar N N. Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. Journal of Hazardous Materials, 2010, 184(1–3): 538–546

    Article  CAS  Google Scholar 

  33. Lin M, Huang H, Liu Z, Liu Y, Ge J, Fang Y. Growth-dissolutionregrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions. Langmuir, 2013, 29(49): 15433–15441

    Article  CAS  Google Scholar 

  34. Wiatrowski H A, Das S, Kukkadapu R, Ilton E S, Barkay T, Yee N. Reduction of Hg(II) to Hg(0) by magnetite. Environmental Science & Technology, 2009, 43(14): 5307–5313

    Article  CAS  Google Scholar 

  35. Sivashankar R, Sathya A B, Vasantharaj K, Sivasubramanian V. Magnetic composite an environmental super adsorbent for dye sequestration—A review. Environmental Nanotehcnology Monitoring & Management, 2014, 1–2(3): 36–49.

    Article  Google Scholar 

  36. Chaudhary G R, Saharan P, Kumar A, Mehta S K, Mor S, Umar A. Adsorption studies of cationic, anionic and azo-dyes via monodispersed Fe3O4 nanoparticles. Journal of Nanoscience and Nanotechnology, 2013, 13(5): 3240–3245

    Article  CAS  Google Scholar 

  37. Zhang D, Xu D, Ni Y, Lu C, Xu Z. A facile one-pot synthesis of monodisperse ring-shaped hollow Fe3O4 nanospheres for waste water treatment. Materials Letters, 2014, 123(5): 116–119

    Article  CAS  Google Scholar 

  38. Pratt A. Nanomagnetism: Fundamentals and Applications Chapter 7—Environmental Applications of Magnetic Nanoparticles Frontiers of Nanoscience, 2014, 6(1): 259–307

    CAS  Google Scholar 

  39. Giri S K, Das N N, Pradhan G C. Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2011, 389(1–3): 43–49

    Article  CAS  Google Scholar 

  40. Rongcheng W, Jiuhui Q. Removal of azo dye from water by magnetite adsorption-Fenton oxidation. Water Environment Research, 2004, 76(7): 2637–2642

    Article  Google Scholar 

  41. Babuponnusami A, Muthukumarm K. A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2014, 2(1): 557–572

    Article  CAS  Google Scholar 

  42. Lee S, Oh J, Park Y. Degradation of Phenol with Fenton-like Treatment. Bulletin of the Korean Chemical Society, 2006, 27(4): 489–494

    Article  CAS  Google Scholar 

  43. Xue X, Hanna K, Deng N. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. Journal of Hazardous Materials, 2009, 166(1): 407–414

    Article  CAS  Google Scholar 

  44. de Hierro J, Vergara-Sánchez J P, Pérez-Orozco R. Suárez-Parra A, Hernandez-Pérez I. Degradación Del Colorante Azo Rojo Reactivo 120 En Soluciones Acuosas Usando Sistemas Homogéneos/Heterogéneos. Revista Mexicana de Ingeniería Química, 2012, 11(1): 121–131

    Google Scholar 

  45. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007, 2(9): 577–583

    Article  CAS  Google Scholar 

  46. Fang G D, Zhou D M, Dionysiou D D. Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: demonstration in the degradation of 2-chlorobiphenyl. Journal of Hazardous Materials, 2013, 250–251: 68–75

    Article  CAS  Google Scholar 

  47. Jiang C, Gao Z, Qu H, Li J, Wang X, Li P, Liu H. A new insight into Fenton and Fenton-like processes for water treatment: Part II. Influence of organic compounds on Fe(III)/Fe(II) interconversion and the course of reactions. Journal of Hazardous Materials, 2013, 250–251: 76–81

    Article  CAS  Google Scholar 

  48. Li L, Fan M, Brown R C, Van Leeuwen J H, Wang J, Wang W, Song Y, Zhang P. Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Critical Reviews in Environmental Science and Technology, 2006, 36(5): 405–431

    Article  CAS  Google Scholar 

  49. Zhong Y, Liang X, Tan W, Zhong Y, He H, Zhu J, Yuan P, Jiang Z. A comparative study about the effects of isomorphous substitution of transition metals (Ti, Cr, Mn, Co and Ni) on the UV/Fenton catalytic activity of magnetite. Journal of Molecular Catalysis A Chemical, 2013, 372: 29–34

    Article  CAS  Google Scholar 

  50. Musata V, Potecasua O, Beleab R, Alexandrua P. Magnetic materials from co-precipitated ferrite nanoparticles. Materials Science and Engineering B, 2010, 167(2): 85–90

    Article  CAS  Google Scholar 

  51. Costa R C C, LelisMF F, Oliveira L C A, Fabris J D, Ardisson J D, Rios R R V A, Silva C N, Lago R M. Novel active heterogeneous Fenton system based on Fe3–xMxO4 (Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. Journal of Applied Physics, 2006, 129(1–3): 171–178

    CAS  Google Scholar 

  52. Ahalya K, Suriyanarayanan N, Ranjithkumar V. Effect of cobalt substitution on structural and magnetic properties and chromium adsorption of manganese ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2014, 372: 208–213

    Article  CAS  Google Scholar 

  53. Yang L X, Xu Y B, Jin R C, Wang F, Yin P, Li G H, Xu C P, Pan L B. Nonstoichiometric M-ferrite porous spheres: preparation, shape evolution and magnetic properties. Ceramics International, 2015, 41(2): 2309–2317

    Article  CAS  Google Scholar 

  54. Bai Y, Zhou J, Gui Z, Li L. Phase formation process, microstructure and magnetic properties of Y-type hexagonal ferrite prepared by citrate sol–gel auto-combustion method. Materials Chemistry and Physics, 2006, 98(1): 66–70

    Article  CAS  Google Scholar 

  55. Tu Y J, You C F, Chang C K, Wang S L, Chan T S. Arsenate adsorption from water using a novel fabricated copper ferrite. Chemical Engineering Journal, 2012, 198–199: 440–448

    Article  CAS  Google Scholar 

  56. Hu J, Lo I M C, Chen G. Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir, 2005, 21(24): 11173–11179

    Article  CAS  Google Scholar 

  57. Tu Y J, You C F, Chang C K. Kinetics and thermodynamics of adsorption for Cd on green manufactured nano-particles. Journal of Hazardous Materials, 2012, 235–236: 116–122

    Article  CAS  Google Scholar 

  58. Liang X, He Z, Wei G, Liu P, Zhong Y, Tan W, Du P, Zhu J, He H, Zhang J. The distinct effects of Mn substitution on the reactivity of magnetite in heterogeneous Fenton reaction and Pb(II) adsorption. Journal of Colloid and Interface Science, 2014, 426: 181–189

    Article  CAS  Google Scholar 

  59. Horst MF, Alvarez M, Lassalle V. Composites Magnetic Materials based on biopolymer and the application as heavy metal adsorbent in aqueous medium. In Argentinian Polymer Symposium, Buenos Aires, 2013, 1–4

    Google Scholar 

  60. Kumar Reddy D H, Lee S M. Three-dimensional porous spinel ferrite as an adsorbent for Pb(II) removal from aqueous solutions. Industrial & Engineering Chemistry Research, 2013, 52(45): 15789–15800

    Article  CAS  Google Scholar 

  61. Ahalya K, Suriyanarayanan N, Sangeetha S. Effect of pH and annealing temperatures on structural, magnetic, electrical, dielectric and adsorption properties of manganese ferrite nanoparticles. Materials Science in Semiconductor Processing, 2014, 27: 672–681

    Article  CAS  Google Scholar 

  62. Bradl H B. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 2004, 277 (1): 1–18

    Article  CAS  Google Scholar 

  63. Lou J C, Chang C K. Completely treating heavy metal laboratory waste liquid by an improved ferrite process. Separation and Purification Technology, 2007, 57(3): 513–518

    Article  CAS  Google Scholar 

  64. Stoyanova M, Slavova I, Christoskova St, Ivanov V. Catalytic performance of supported nanosized cobalt and iron–cobalt mixed oxides on MgO in oxidative degradation of Acid Orange 7 azo dye with peroxy-monosulfate. Applied Catalysis A, General, 2014, 476: 121–132

    Article  CAS  Google Scholar 

  65. Costa R C C, LelisMF F, Oliveira L C A, Fabris J D, Ardisson J D, Rios R R, Silva C N, Lago R M. Novel active heterogeneous Fenton system based on Fe3–xMxO4 (Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. Journal of Hazardous Materials, 2006, 129(1–3): 171–178

    Article  CAS  Google Scholar 

  66. Nguyen T D, Phan N H, Do MH, Ngo K T. Magnetic Fe2MO4 (M: Fe, Mn) activated carbons: fabrication, characterization and heterogeneous Fenton oxidation of methyl orange. Journal of Hazardous Materials, 2011, 185(2–3): 653–661

    Article  CAS  Google Scholar 

  67. Liang X, Zhong Y, He H, Yuan P, Zhu J, Zhu S, Jiang Z. The application of chromium substituted magnetite as heterogeneous Fenton catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 2012, 191: 177–184

    Article  CAS  Google Scholar 

  68. Silva G C, Ciminelli V S T, Ferreira A M, Pissolati N C, Paiva P R P, López J L. Material A facile synthesis of Mn3O4/Fe3O4 superparamagnetic nanocomposites by chemical precipitation: characterization and application in dye degradation. Research Bulletin (Sun Chiwawitthaya Thang Thale Phuket), 2014, 49: 544–551

    Article  CAS  Google Scholar 

  69. Liang X, He Z, Zhong Y, Tan W, He H, Yuan P, Zhu J, Zhang J. The effect of transition metal substitution on the catalytic activity of magnetite in heterogeneous Fenton reaction: In interfacial view. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2013, 435: 28–35

    Article  CAS  Google Scholar 

  70. Nicolás P, Saleta M, Troiani H, Zysler R, Lassalle V, Ferreira ML. Preparation of iron oxide nanoparticles stabilized with biomolecules: experimental and mechanistic issues. Acta Biomaterialia, 2013, 9(1): 4754–4762

    Article  CAS  Google Scholar 

  71. Lassalle V, Zysler R, Ferreira M L. Novel and facile synthesis of magnetic composites by a modified co-precipitation method. Materials Chemistry and Physics, 2011, 130(1–2): 624–634

    Article  CAS  Google Scholar 

  72. Soares P I, Alves A M R, Pereira L C J, Coutinho J T, Ferreira I M M, Novo CMM, Borges J P. Effects of surfactants on the magnetic properties of iron oxide colloids. Journal of Colloid and Interface Science, 2014, 419: 46–51

    Article  CAS  Google Scholar 

  73. Yu W W, Falkner J C, Yavuz C T, Colvin V L. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chemical Communications, 2004, (20): 2306–2307

    Article  CAS  Google Scholar 

  74. Sharifabadi M K, Tehrani M S, Mehdinia A, Azar P A, Husain S W. Fast removal of citalopram drug from waste water using magnetic nanoparticles modified with sodium dodecyl sulfate followed by UV-spectrometry. Journal of Chemical Health Risks, 2013, 3(4): 35–41

    Google Scholar 

  75. Ahmadi R, Gu N, Hosseini H R M. Characterization of cysteine coated magnetite nanoparticles as MRI contrast agent. Nano Micro Letters, 2012, 4(3): 180–183

    Article  CAS  Google Scholar 

  76. Tie S L, Lin Y Q, Lee H C, Bae Y S, Lee C H. Amino acid coated nano-sized magnetite particles prepared by two-step transformation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2006, 273(1–3): 75–83

    Article  CAS  Google Scholar 

  77. Marinescu G, Patron L, Culita D C, Neagoe C, Lepadatu C I, Balint I, Bessais L, Cizmas C B. Synthesis of magnetite nanoparticles in the presence of aminoacids. Journal of Nanoparticle Research, 2006, 8(6): 1045–1051

    Article  CAS  Google Scholar 

  78. Adeli M, Yamini Y, Araji M. Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arabian Journal of Chemistry, 2012

    Google Scholar 

  79. Faraji M, Yamini Y, Rezaee M. Extraction of trace amounts of mercury with sodium dodecyle sulphate-coated magnetite nanoparticles and its determination by flow injection inductively coupled plasma-optical emission spectrometry. Talanta, 2010, 81(3): 831–836

    Article  CAS  Google Scholar 

  80. Inbaraj B S, Wang J S, Lu J F, Siao F Y, Chen B H. Adsorption of toxic mercury(II) by an extracellular biopolymer poly(gammaglutamic acid). Bioresource Technology, 2009, 100(1): 200–207

    Article  CAS  Google Scholar 

  81. White B R, Stackhouse B T, Holcombe J A. Magnetic gamma- Fe2O3 nanoparticles coated with poly-l-cysteine for chelation of As (III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). Journal of Hazardous Materials, 2009, 161(2–3): 848–853

    Article  CAS  Google Scholar 

  82. Zhang Y R, Shen S L, Wang S Q, Huang J, Su P, Wang Q R, Zhao B X. A dual function magnetic nanomaterial modified with lysine for removal of organic dyes from water solution. Chemical Engineering Journal, 2014, 239: 250–259

    Article  CAS  Google Scholar 

  83. Inbaraj B S, Chen B H. Dye adsorption characteristics of magnetite nanoparticles coated with a biopolymer poly(glutamic acid). Bioresource Technology, 2011, 102(19): 8868–8876

    Article  CAS  Google Scholar 

  84. Faraj M, Yamini Y, Tahmasebi E, Salen A, Nournohammadian F. Cetyltimethyl ammonim bromide coated magnetite nanoparticles as highly efficient adsorbent for rapid removal of reactive dyes from the textile companies wastewaters. Journal of the Indian Chemical Society, 2010, 7: 130–144

    Google Scholar 

  85. Dalali N, Khoramnezhad M, Habibizadeh M, Faraji M. Magnetic removal of acidic dyes from waste waters using surfactant- coated magnetite nanoparticles: optimization of process by Taguchi method. In: Proceedings of International Conference on Environmental and Agriculture Engineering IPCBEE, 2011, 15: 89–94

    Google Scholar 

  86. Wei S, Wang Q, Zhu J, Sun L, Lin H, Guo Z. Multifunctional composite core-shell nanoparticles. Nanoscale, 2011, 3(11): 4474–4502

    Article  CAS  Google Scholar 

  87. Fan MD, Yuan P, Bergaya F, He H, Chen T, Zhu J, Liu D. Yuan P, Bergaya F, He H P, Chen T H, Zhu J X, Liu D. A critical textural evolution study of zerovalent iron/montmorillonite nanosized heterostructures under various iron loadings. Clays and Clay Minerals, 2011, 59(5): 490–500

    Article  CAS  Google Scholar 

  88. Kang K, Jang M, Cui M, Qiua P, Park B, Snyder S A, Khim J. Preparation and characterization of magnetic-core titanium dioxide: implications for photocatalytic removal of ibuprofen. Journal of Molecular Catalysis A Chemical, 2014, 390: 178–186

    Article  CAS  Google Scholar 

  89. Li Y, Chu J, Qi J, Li X. An easy and novel approach for the decoration of graphene oxide by Fe3O4 nanoparticles. Applied Surface Science, 2011, 257(14): 6059–6062

    Article  CAS  Google Scholar 

  90. Yu F, Chen J, Chen L, Huai J, Gong W, Yuan Z, Wang J, Ma J. Magnetic carbon nanotubes synthesis by Fenton’s reagent method and their potential application for removal of azo dye from aqueous solution. Journal of Colloid and Interface Science, 2012, 378(1): 175–183

    Article  CAS  Google Scholar 

  91. Wang Z, Guo H, Yu Y, He N. Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction. Journal of Magnetism and Magnetic Materials, 2006, 302(2): 397–404

    Article  CAS  Google Scholar 

  92. Chen X, Lam K F, Zhang Q, Pan B, Arruebo M, Yeung K L. Synthesis of Highly Selective Magnetic Mesoporous Adsorbent. Journal of Physical Chemistry C, 2009, 113(22): 9804–9813

    Article  CAS  Google Scholar 

  93. Zhang C, Sui J, Li J, Tang Y, Cai W. Efficient removal of heavy metal ions by thiol-functionalized super paramagnetic carbon nanotubes. Chemical Engineering Journal, 2012, 210: 45–52

    Article  CAS  Google Scholar 

  94. Gong J, Wang X, Shao X, Yuan S, Yang C, Hu X. Adsorption of heavy metal ions by hierarchically structured magnetite-carbonaceous spheres. Talanta, 2012, 101: 45–52

    Article  CAS  Google Scholar 

  95. Guo X, Du B, Wei Q, Yang J, Hu L, Yan L, Xu W. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. Journal of Hazardous Materials, 2014, 278: 211–220

    Article  CAS  Google Scholar 

  96. Bavio M A, Lista A G. Synthesis and characterization of hybridmagnetic nanoparticles and their application for removal of arsenic from groundwater. The Scientific World Journal, 2013, 2013: 387458–387465

    Article  CAS  Google Scholar 

  97. Kim B C, Lee J, Um W, Kim J, Joo J, Lee J H, Kwak J H, Kim J H, Lee C, Lee H, Addleman R S, Hyeon T, Gu M B, Kim J. Magnetic mesoporous materials for removal of environmental wastes. Journal of Hazardous Materials, 2011, 192(3): 1140–1147

    Article  CAS  Google Scholar 

  98. Girginova P I, Daniel-da-Silva A L, Lopes C B, Figueira P, Otero M, Amaral V S, Pereira E, Trindade T. Silica coated magnetite particles for magnetic removal of Hg2+ from water. Journal of Colloid and Interface Science, 2010, 345(2): 234–240

    Article  CAS  Google Scholar 

  99. Atia A A, Donia A M, Al-Amrani W A. Adsorption/desorption behavior of acid orange 10 on magnetic silica modified with amine groups. Chemical Engineering Journal, 2009, 150(1): 55–62

    Article  CAS  Google Scholar 

  100. Wang L, Li J, Wang Y, Zhao L. Preparation of nanocrystalline Fe3–x LaxO4 ferrite and their adsorption capability for Congo red. Journal of Hazardous Materials, 2011, 196: 342–349

    CAS  Google Scholar 

  101. Farrokhi M, Hosseini S C, Yang J K, Shirzad-Siboni M. Application of ZnO–Fe3O4 Nanocomposite on the removal of azo dye from aqueous solutions: kinetics and equilibrium studies. Water, Air, and Soil Pollution, 2014, 225(9): 2113–2118

    Article  CAS  Google Scholar 

  102. Pena-Pereira F, Duarte R M B O, Trindade T, Duarte A C. Determination of anionic surface active agents using silica coated magnetite nanoparticles modified with cationic surfactant aggregates. Journal of Chromatography. A, 2013, 1299: 25–32

    Article  CAS  Google Scholar 

  103. Gu L, Zhu N, Guo H, Huang S, Lou Z, Yuan H. Adsorption and Fenton-like degradation of naphthalene dye intermediate on sewage sludge derived porous carbon. Journal of Hazardous Materials, 2013, 246–247: 145–153

    Article  CAS  Google Scholar 

  104. Kerkez O, Bayazit S S. Magnetite decorated multi-walled carbon nanotubes for removal of toxic dyes from aqueous solutions. Journal of Nanoparticle Research, 2014, 16(6): 24–31

    Article  CAS  Google Scholar 

  105. Zhang Z, Kong J. Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. Journal of Hazardous Materials, 2011, 193: 325–329

    Article  CAS  Google Scholar 

  106. Do MH, Phan N H, Nguyen T D, Pham T T, Nguyen V K, Vu T T, Nguyen T K. Activated carbon/Fe3O4 nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide. Chemosphere, 2011, 85(8): 1269–1276

    Article  CAS  Google Scholar 

  107. Masotti A, Caporali A. Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications. International Journal of Molecular Sciences, 2013, 14(12): 24619–24642

    Article  CAS  Google Scholar 

  108. Wu H, Yin J J, Wamer W G, Zeng M, Lo Y M. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. Journal of Food and Drug Analysis, 2014, 22(1): 86–94

    Article  CAS  Google Scholar 

  109. Gómez Pastora J, Bring E, Ortiz I. Recent progress and future challenges on the use of high performance magnetic nanoadsorbents in environmental applications. Chemical Engineering Journal, 2014, 256: 187–204

    Article  CAS  Google Scholar 

  110. Garrido-Ramírez E G, Theng B K G, Mora M L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—A review. Applied Clay Science, 2010, 47(3–4): 182–192

    Article  CAS  Google Scholar 

  111. Zhou L, Gao C, Xu W. Magnetic dendritic materials for highly efficient adsorption of dyes and drugs. Applied Materials and Interfaces, 2010, 2(5): 1483–1491

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Fernanda Horst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horst, M.F., Lassalle, V. & Ferreira, M.L. Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and antraquinonic dyes. Front. Environ. Sci. Eng. 9, 746–769 (2015). https://doi.org/10.1007/s11783-015-0814-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-015-0814-x

Keywords

Navigation