Skip to main content
Log in

Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Adsorption is the most widely used technology for the removal of indoor volatile organic compounds (VOCs). However, existing adsorbent-based technologies are inadequate to meet the regulatory requirement, due to their limited adsorption capacity and efficiency, especially under high relative humidity (RH) conditions. In this study, a series of new porous clay heterostructure (PCH) adsorbents with various ratios of micropores to mesopores were synthesized, characterized and tested for the adsorption of acetaldehyde and toluene. Two of them, PCH25 and PCH50, exhibited markedly improved adsorption capability, especially for hydrophilic acetaldehyde. The improved adsorption was attributed to their large micropore areas and high micropore-to-mesopore volume ratios. The amount of acetaldehyde adsorbed onto PCH25 at equilibrium reached 62.7 mg·g−1, eight times as much as the amount adsorbed onto conventional activated carbon (AC). Even at a high RH of 80%, PCH25 removed seven and four times more of the acetaldehyde than AC and the unmodified raw PCHs did, respectively. This new PCH optimized for their high adsorption and resistance to humidity has promising applications as a cost-effective adsorbent for indoor air purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clarisse B, Laurent A M, Seta N, Le Moullec Y, El Hasnaoui A, Momas I. Indoor aldehydes: measurement of contamination levels and identification of their determinants in Paris dwellings. Environmental Research, 2003, 92(3): 245–253

    Article  CAS  Google Scholar 

  2. Weng M, Zhu L, Yang K, Chen S. Levels, sources, and health risks of carbonyls in residential indoor air in Hangzhou, China. Environmental Monitoring and Assessment, 2010, 163(1–4): 573–581

    Article  CAS  Google Scholar 

  3. Guo H. Source apportionment of volatile organic compounds in Hong Kong homes. Building and Environment, 2011, 46(11): 2280–2286

    Article  Google Scholar 

  4. Du Z J, Mo J H, Zhang Y P, Xu Q J. Benzene, toluene and xylenes in newly renovated homes and associated health risk in Guangzhou, China. Building and Environment, 2014, 72: 75–81

    Article  Google Scholar 

  5. Lyu J Z, Zhu L Z, Burda C. Optimizing nanoscale TiO2 for adsorption-enhanced photocatalytic degradation of low-concentration air pollutants. Chemcatchem, 2013, 5(10): 3114–3123

    Article  CAS  Google Scholar 

  6. Chiang C Y, Liu Y Y, Chen Y S, Liu H S. Absorption of hydrophobic volatile organic compounds by a rotating packed bed. Industrial & Engineering Chemistry Research, 2012, 51(27): 9441–9445

    Article  CAS  Google Scholar 

  7. Lashaki M J, Fayaz M, Wang H H, Hashisho Z, Philips J H, Anderson J E, Nichols M. Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon. Environmental Science & Technology, 2012, 46(7): 4083–4090

    Article  CAS  Google Scholar 

  8. Chen H M, He J H, Zhang C B, He H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. Journal of Physical Chemistry C, 2007, 111(49):18033–18038

    Article  CAS  Google Scholar 

  9. Li L, Liu S, Liu J. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. Journal of Hazardous Materials, 2011, 192(2): 683–690

    Article  CAS  Google Scholar 

  10. Nouri S, Haghseresht F. Adsorption of p-nitrophenol in untreated and treated activated carbon. Adsorption-Journal of the International Adsorption Society, 2004, 10(1): 79–86

    Article  CAS  Google Scholar 

  11. Cal M P, Rood M J, Larson S M. Removal of VOCs from humidified gas streams using activated carbon cloth. Gas Separation & Purification, 1996, 10(2): 117–121

    Article  CAS  Google Scholar 

  12. Chmielarz L, Kustrowski P, Piwowarska Z, Dudek B, Gil B, Michalik M. Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 2009, 88(3–4): 331–340

    Article  CAS  Google Scholar 

  13. Chmielarz L, Piwowarska Z, Kustrowski P, Gil B, Adamski A, Dudek B, Michalik M. Porous clay heterostructures (PCHs) intercalated with silica-titania pillars and modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 2009, 91(1–2): 449–459

    Article  CAS  Google Scholar 

  14. Pires J, Bestilleiro M, Pinto M, Gil A. Selective adsorption of carbon dioxide, methane and ethane by porous clays heterostructures. Separation and Purification Technology, 2008, 61(2): 161–167

    Article  CAS  Google Scholar 

  15. Pires J, Araújo A C, Carvalho A P, Pinto ML, González-Calbet JM, Ramírez-Castellanos J. Porous materials from clays by the gallery template approach: synthesis, characterization and adsorption properties. Microporous and Mesoporous Materials, 2004, 73(3): 175–180

    Article  CAS  Google Scholar 

  16. Santos C, Andrade M, Vieira A L, Martins A, Pires J, Freire C, Carvalho A P. Templated synthesis of carbon materials mediated by porous clay heterostructures. Carbon, 2010, 48(14): 4049–4056

    Article  CAS  Google Scholar 

  17. Nunes C D, Pires J, Carvalho A P, Calhorda M J, Ferreira P. Synthesis and characterisation of organo-silica hydrophobic clay hetero structures for volatile organic compounds removal. Microporous and Mesoporous Materials, 2008, 111(1–3): 612–619

    Article  CAS  Google Scholar 

  18. Qu F, Zhu L, Yang K. Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH). Journal of Hazardous Materials, 2009, 170(1): 7–12

    Article  CAS  Google Scholar 

  19. Zhu H Y, Ding Z, Barry J C. Porous solids from layered clays by combined pillaring and templating approaches. Journal of Physical Chemistry B, 2002, 106(44): 11420–11429

    Article  CAS  Google Scholar 

  20. Hu X J, Qiao S Z, Zhao X S, Lu G Q. Adsorption study of benzene in ink-bottle-like MCM-41. Industrial & Engineering Chemistry Research, 2001, 40(3): 862–867

    Article  CAS  Google Scholar 

  21. Rege S U, Yang R T. Corrected Horváth-Kawazoe equations for pore-size distribution. AIChE Journal. American Institute of Chemical Engineers, 2000, 46(4): 734–750

    Article  CAS  Google Scholar 

  22. Wei L M, Tang T, Huang B T. Novel acidic porous clay heterostructure with highly ordered organic-inorganic hybrid structure: one-pot synthesis of mesoporous organosilica in the galleries of clay. Microporous and Mesoporous Materials, 2004, 67(2–3): 175–179

    Article  CAS  Google Scholar 

  23. Lippens B C, Deboer J H. Studies on Pore Systems In Catalysts: V. The tMethod. Journal of Catalysis, 1965, 4(3): 319–323

    Article  CAS  Google Scholar 

  24. Kowalczyk P, Terzyk A P, Gauden P A, Leboda R, Szmechtig-Gauden E, Rychlicki G, Ryu Z Y, Rong H Q. Estimation of the poresize distribution function from the nitrogen adsorption isotherm. Comparison of density functional theory and the method of Do and co-workers. Carbon, 2003, 41(6): 1113–1125

    Article  CAS  Google Scholar 

  25. Wang Z M, Kaneko K. Effect of pore width on micropore filling mechanism of SO2 in carbon micropores. Journal of Physical Chemistry B, 1998, 102(16): 2863–2868

    Article  CAS  Google Scholar 

  26. Hanzawa Y, Suzuki T, Kaneko K. Entrance-enriched micropore filling of n-nonane. Langmuir, 1994, 10(9): 2857–2859

    Article  CAS  Google Scholar 

  27. Kosuge K, Kubo S, Kikukawa N, Takemori M. Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance. Langmuir, 2007, 23(6): 3095–3102

    Article  CAS  Google Scholar 

  28. Skubiszewska-Zięba J, Charmas B, Leboda R, Staszczuk P, Kowalczyk P, Oleszczuk P. Effect of hydrothermal modification on the porous structure and thermal properties of carbon-silica adsorbents (carbosils). Materials Chemistry and Physics, 2003, 78(2): 486–494

    Article  Google Scholar 

  29. Takeuchi M, Hidaka M, Anpo M. Efficient removal of toluene and benzene in gas phase by the TiO2/Y-zeolite hybrid photocatalyst. Journal of Hazardous Materials, 2012, 237–238: 133–139

    Article  CAS  Google Scholar 

  30. Xu L, Zhu L. Structures of OTMA- and DODMA-bentonite and their sorption characteristics towards organic compounds. Journal of Colloid and Interface Science, 2009, 331(1): 8–14

    Article  CAS  Google Scholar 

  31. Cecilia J A, García-Sancho C, Franco F. Montmorillonite based porous clay heterostructures: Influence of Zr in the structure and acidic properties. Microporous and Mesoporous Materials, 2013, 176: 95–102

    Article  CAS  Google Scholar 

  32. Pálková H, Madejová J, Zimowska M, Serwicka E M. Laponitederived porous clay heterostructures: II. FTIR study of the structure evolution. Microporous and Mesoporous Materials, 2010, 127(3): 237–244

    Article  CAS  Google Scholar 

  33. Stefanov B I, Topalian Z, Granqvist C G, Osterlund L. Acetaldehyde adsorption and condensation on anatase TiO2: influence of acetaldehyde dimerization. Journal of Molecular Catalysis A Chemical, 2014, 381: 77–88

    Article  CAS  Google Scholar 

  34. Singh M, Zhou N, Paul D K, Klabunde K J. IR spectral evidence of aldol condensation: Acetaldehyde adsorption over TiO2 surface. Journal of Catalysis, 2008, 260(2): 371–379

    Article  CAS  Google Scholar 

  35. Cao H B, Du P F, Song L X, Xiong J, Yang J J, Xing T H, Liu X, Wu R R, Wang M C, Shao X L. Co-electrospinning fabrication and photocatalytic performance of TiO2/SiO2 core/sheath nanofibers with tunable sheath thickness. Materials Research Bulletin, 2013, 48(11): 4673–4678

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhong Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Zhu, L. Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air. Front. Environ. Sci. Eng. 10, 219–228 (2016). https://doi.org/10.1007/s11783-014-0760-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-014-0760-z

Keywords

Navigation