Skip to main content
Log in

Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA), an endocrine disrupting compound, has caused wide public concerns due to its wide occurrence in environment and harmful effects. BPA has been detected in many surface waters and drinking water with the maximum concentrations up to tens of μg·L−1. The physicochemical technology options in eliminating BPA can be divided into four categories: oxidation, advanced oxidation, adsorption and membrane filtration. Each removal option has its own limitation and merits in removing BPA. Oxidation and advanced oxidation generally can remove BPA efficiently while they also have some drawbacks, such as high cost, the generation of a variety of transformation products that are even more toxic than the parent compound and difficult to be mineralized. Only few advanced oxidation methods have been reported to be able to mineralize BPA completely. Therefore, it is important not only to identify the major initial transformation products but also to assess their estrogenic activity relative to the parent compounds when oxidation methods are employed to remove BPA. Without formation of harmful by-products, physical separation methods such as activated carbon adsorption and membrane processes are able to remove BPA in water effluents and thus have potential as BPA removal technologies. However, the necessary regeneration of activated carbon and the low BPA removal efficiency when the membrane became saturated may limit the application of activated carbon adsorption and membrane processes for BPA removal. Hybrid processes, e.g. combining adsorption and biologic process or combining membrane and oxidation process, which can achieve simultaneous physical separation and degradation of BPA, will be highly preferred in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krishnan P, Le H, Lee S H, Gelerinter E. Further EPR studies of molecular motions in polymer/plasticizer mixtures. Journal of Polymer Science. Part B, Polymer Physics, 1993, 31(13): 1885–1890

    Article  CAS  Google Scholar 

  2. Von Reppert-Bismarck J, EU to Ban Bisphenol A in Baby Bottles in 2011, Reuters. Nov., 25. 2010

    Google Scholar 

  3. Vandenberg L N, Hauser R, Marcus M, Olea N, Welshons W V. Human exposure to Bisphenol A (BPA). Reproductive Toxicology (Elmsford, N.Y.), 2007, 24(2): 139–177

    Article  CAS  Google Scholar 

  4. Kolpin D W, Furlong E T, Meyer M T, Thurman E M, Zaugg S D, Barber L B, Buxton H T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environmental Science and Technology, 2002, 36(6): 1202–1211

    Article  CAS  Google Scholar 

  5. Rodriguez-Mozaz S, de Alda M J, Barceló D. Monitoring of estrogens, pesticides and BPA in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatographymass spectrometry. Journal of Chromatography A, 2004, 1045(1–2): 85–92

    Article  CAS  Google Scholar 

  6. Fromme H, Küchler T, Otto T, Pilz K, Müller J, Wenzel A. Occurrence of phthalates and bisphenol A and F in the environment. Water Research, 2002, 36(6): 1429–1438

    Article  CAS  Google Scholar 

  7. Staples C A, Williams J B, Blessing R L, Varineau P T. Measuring the biodegradability of nonylphenol ether carboxylates, octylphenol ether carboxylates, and nonylphenol. Chemosphere, 1999, 38(9): 2029–2039

    Article  CAS  Google Scholar 

  8. Céspedes R, Lacorte S, Raldúa D, Ginebreda A, Barceló D, Piña B. Distribution of endocrine disruptors in the Llobregat River Basin (Catalonia, NE Spain). Chemosphere, 2005, 61(11): 1710–1719

    Article  Google Scholar 

  9. González-Casado A, Navas N, del Olmo M, Vílchez J L. Determination of BPA in water by micro liquid-liquid extraction followed by silylation and gas chromatography-mass spectrometry analysis. Journal of Chromatographic Science, 1998, 36(11): 565–569

    Article  Google Scholar 

  10. Ribeiro C, Pardal MÂ, Martinho F, Margalho R, Tiritan M E, Rocha E, Rocha M J. Distribution of endocrine disruptors in the Mondego River Estuary, Portugal. Environmental Monitoring and Assessment, 2009, 149(1–4): 183–193

    Article  CAS  Google Scholar 

  11. Ribeiro C, Tiritan M E, Rocha E, Rocha M J. Seasonal and spatial distribution of several endocrine-disrupting compounds in the Douro River Estuary, Portugal. Archives of Environmental Contamination and Toxicology, 2009, 56(1): 1–11

    Article  CAS  Google Scholar 

  12. Jonkers N, Kohler H P E, Dammshäuser A, Giger W. Mass flows of endocrine disruptors in the Glatt River during varying weather conditions. Environmental Pollution, 2009, 157(3): 714–723

    Article  CAS  Google Scholar 

  13. Ko E J, Kim K W, Kang S Y, Kim S D, Bang S B, Hamm S Y, Kim D W. Monitoring of environmental phenolic endocrine disrupting compounds in treatment effluents and river waters, Korea. Talanta, 2007, 73(4): 674–683

    Article  CAS  Google Scholar 

  14. Pojana G, Gomiero A, Jonkers N, Marcomini A. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environment International, 2007, 33(7): 929–936

    Article  CAS  Google Scholar 

  15. Boyd G R, Palmeri J M, Zhang S, Grimm D A. Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in stormwater canals and Bayou St. John in New Orleans, Louisiana, USA. Science of the Total Environment, 2004, 333(1–3): 137–148

    Article  CAS  Google Scholar 

  16. Xue X, Wu F, Deng N. Determination of endocrine disrupting compounds in rivers and lakes of Wuhan City, China. Journal of Luoyang University, 2005, 20(4): 33–36 (in Chinese)

    Google Scholar 

  17. Gong J, Ran Y, Chen D, Yang Y, Ma X. Occurrence and environmental risk of endocrine-disrupting chemicals in surface waters of the Pearl River, South China. Environmental Monitoring and Assessment, 2009, 156(1–4): 199–210

    Article  CAS  Google Scholar 

  18. Li Z, Li D. Distribution characteristics of BPA in Shihwa Lake and nearby creeks. Transactions of Oceanology and Limnology, 2004, 2: 30–35 (in Chinese)

    Google Scholar 

  19. Zhao J L, Ying G G, Wang L, Yang J F, Yang X B, Yang L H, Li X. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry. Science of the Total Environment, 2009, 407(2): 962–974

    Article  CAS  Google Scholar 

  20. Gong J, Ran Y, Yang Y, Chen D Y. Contamination of estrogenic compounds in the surface water of Guangzhou reach of the Pearl River. Environmental Chemistry, 2008, 2(27): 242–244 (in Chinese)

    Google Scholar 

  21. Kang J H, Kondo F. BPA in the surface water and freshwater snail collected from rivers around a secure landfill. Bulletin of Environmental Contamination and Toxicology, 2006, 76(1): 113–118

    Article  CAS  Google Scholar 

  22. Hashimoto S, Horiuchi A, Yoshimoto T, Nakao M, Omura H, Kato Y, Tanaka H, Kannan K, Giesy J P. Horizontal and vertical distribution of estrogenic activities in sediments and waters from Tokyo Bay, Japan. Archives of Environmental Contamination and Toxicology, 2005, 48(2): 209–216

    Article  CAS  Google Scholar 

  23. Schmidt R, Brockmeyer R. Vorkommen und Verhalten von Expektorantien, Analgetika, Xylometazolin und deren Metaboliten in Gewässern und bei der Uferfiltration. Vom Wasser, 2002, 98: 37–54

    CAS  Google Scholar 

  24. Kuch HM, Ballschmiter K. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environmental Science and Technology, 2001, 35(15): 3201–3206

    Article  CAS  Google Scholar 

  25. Loos R, Hanke G, Umlauf G, Eisenreich S J. LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere, 2007, 66(4): 690–699

    Article  CAS  Google Scholar 

  26. Alum A, Yoon Y, Westerhoff P, Abbaszadegan M. Oxidation of BPA, 17β-estradiol, and 17α-ethynyl estradiol and byproduct estrogenicity. Environmental Toxicology, 2004, 19(3): 257–264

    Article  CAS  Google Scholar 

  27. Lee J, Park H, Yoon J. Ozonation characteristics of bisphenol A in water. Water Environment and Technology, 2003, 24(2): 241–248

    Article  CAS  Google Scholar 

  28. Deborde M, Rabouan S, Duguet J P, Legube B. Kinetics of aqueous ozone-induced oxidation of some endocrine disruptors. Environmental Science and Technology, 2005, 39(16): 6086–6092

    Article  CAS  Google Scholar 

  29. Deborde M, Rabouan S, Mazellier P, Duguet J P, Legube B. Oxidation of BPA by ozone in aqueous solution. Water Research, 2008, 42(16): 4299–4308

    Article  CAS  Google Scholar 

  30. Garoma T, Matsumoto S. Ozonation of aqueous solution containing BPA: effect of operational parameters. Journal of Hazardous Materials, 2009, 167(1–3): 1185–1191

    Article  CAS  Google Scholar 

  31. Garoma T, Matsumoto S, Wu Y, Klinger R. Removal of BPA and its reaction-intermediates from aqueous solution by ozonation. Ozone Science and Engineering, 2010, 32(5): 338–343

    Article  CAS  Google Scholar 

  32. Gultekin I, Mavrov V, Ince N H. Degradation of BPA by ozonation. Journal of Advanced Oxidation Technologies, 2009, 12(2): 242–248

    CAS  Google Scholar 

  33. Waldemer R H, Tratnyek P G. Kinetics of contaminant degradation by permanganate. Environmental Science and Technology, 2006, 40(3): 1055–1061

    Article  CAS  Google Scholar 

  34. Yang J J. Determination of trace permanganate and oxidation of BPA by permanganate. Dissertation for the Master Degree. Harbin: Harbin Institute of Technology, 2008: 32–35

    Google Scholar 

  35. Jiang J, Pang S Y, Ma J. Role of ligands in permanganate oxidation of organics. Environmental Science and Technology, 2010, 44(11): 4270–4275

    Article  CAS  Google Scholar 

  36. Shao X L, Ma J, Wen G, Yang J J. Oxidation of estrone by permanganate: reaction kinetics and estrogenicity removal. Chinese Science Bulletin, 2010, 55(9): 802–808

    Article  CAS  Google Scholar 

  37. Lee Y, Um I H, Yoon J. Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environmental Science and Technology, 2003, 37(24): 5750–5756

    Article  CAS  Google Scholar 

  38. Li C, Li X Z, Graham N. A study of the preparation and reactivity of potassium ferrate. Chemosphere, 2005, 61(4): 537–543

    Article  CAS  Google Scholar 

  39. Lee Y, Yoon J, von Gunten U. Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)). Environmental Science and Technology, 2005, 39(22): 8978–8984

    Article  CAS  Google Scholar 

  40. Li C, Li X Z, Graham N, Gao N Y. The aqueous degradation of BPA and steroid estrogens by ferrate. Water Research, 2008, 42(1–2): 109–120

    Article  CAS  Google Scholar 

  41. Zhang P, Zhang G, Dong J, Fan M, Zeng G. Bisphenol A oxidative removal by ferrate (Fe (VI)) under a weak acidic condition. Separation and Purification Technology, 2011, 84(1): 46–51

    Google Scholar 

  42. Deborde M, von Gunten U. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review. Water Research, 2008, 42(1–2): 13–51

    Article  CAS  Google Scholar 

  43. Hu J Y, Aizawa T, Ookubo S. Products of aqueous chlorination of BPA and their estrogenic activity. Environmental Science and Technology, 2002, 36(9): 1980–1987

    Article  CAS  Google Scholar 

  44. Gallard H, Leclercq A, Croué J P. Chlorination of BPA: kinetics and by-products formation. Chemosphere, 2004, 56(5): 465–473

    Article  CAS  Google Scholar 

  45. Yamamoto T, Yasuhara A. Chlorination of BPA in aqueous media: formation of chlorinated bisphenol A congeners and degradation to chlorinated phenolic compounds. Chemosphere, 2002, 46(8): 1215–1223

    Article  CAS  Google Scholar 

  46. Torres R A, Pétrier C, Combet E, Carrier M, Pulgarin C. Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. Ultrasonics Sonochemistry, 2008, 15(4): 605–611

    Article  CAS  Google Scholar 

  47. Torres R A, Abdelmalek F, Combet E, Pétrier C, Pulgarin C. A comparative study of ultrasonic cavitation and Fenton’s reagent for BPA degradation in deionised and natural waters. Journal of Hazardous Materials, 2007, 146(3): 546–551

    Article  CAS  Google Scholar 

  48. Torres R A, Pétrier C, Combet E, Moulet F, Pulgarin C. BPA mineralization by integrated ultrasound-UV-iron (II) treatment. Environmental Science and Technology, 2007, 41(1): 297–302

    Article  CAS  Google Scholar 

  49. Gültekin I, Ince N H. Ultrasonic destruction of BPA: the operating parameters. Ultrasonics Sonochemistry, 2008, 15(4): 524–529

    Article  Google Scholar 

  50. Guo Z, Feng R. Ultrasonic irradiation-induced degradation of lowconcentration bisphenol A in aqueous solution. Journal of Hazardous Materials, 2009, 163(2–3): 855–860

    Article  CAS  Google Scholar 

  51. Mahamuni N N, Adewuyi Y G. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics Sonochemistry, 2010, 17(6): 990–1003

    Article  CAS  Google Scholar 

  52. Tsai WT, Lee MK, Su T Y, Chang YM. Photodegradation of BPA in a batch TiO2 suspension reactor. Journal of Hazardous Materials, 2009, 168(1): 269–275

    Article  CAS  Google Scholar 

  53. Watanabe N, Horikoshi S, Kawabe H, Sugie Y, Zhao J, Hidaka H. Photodegradation mechanism for BPA at the TiO2/H2O interfaces. Chemosphere, 2003, 52(5): 851–859

    Article  CAS  Google Scholar 

  54. Guo C, Ge M, Liu L, Gao G, Feng Y, Wang Y. Directed synthesis of mesoporous TiO2 microspheres: catalysts and their photocatalysis for BPA degradation. Environmental Science and Technology, 2010, 44(1): 419–425

    Article  CAS  Google Scholar 

  55. Xie Y B, Li X Z. Degradation of BPA in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation. Journal of Hazardous Materials, 2006, 138(3): 526–533

    Article  CAS  Google Scholar 

  56. Fukahori S, Iguchi Y, Ichiura H, Kitaoka T, Tanaka H, Wariishi H. Effect of void structure of photocatalyst paper on VOC decomposition. Chemosphere, 2007, 66(11): 2136–2141

    Article  CAS  Google Scholar 

  57. Wang R, Ren D, Xia S, Zhang Y, Zhao J. Photocatalytic degradation of BPA using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). Journal of Hazardous Materials, 2009, 169(1–3): 926–932

    CAS  Google Scholar 

  58. Tao H, Hao S, Chang F, Wang L, Zhang Y, Cai X, Zeng J S D. Photodegradation of BPA by Titana Nanoparticles in Mesoporous MCM-41. Water, Air, and Soil Pollution, 2011, 214(1): 491–498

    Article  CAS  Google Scholar 

  59. Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integrated microwave/UV illumination technique: VI. A simple modified domestic microwave oven integrating an electrodeless UV-Vis lamp to photodegrade environmental pollutants in aqueous media. Journal of Photochemistry and Photobiology A Chemistry, 2004, 161(2): 221–225

    Article  CAS  Google Scholar 

  60. Wang G, Wu F, Zhang X, Luo M, Deng N. Enhanced TiO2 photocatalytic degradation of bisphenol E by β-cyclodextrin in suspended solutions. Journal of Photochemistry and Photobiology A Chemistry, 2006, 133(1–3): 85–91

    CAS  Google Scholar 

  61. Kaneco S, Rahman M A, Suzuki T, Katsumata H, Ohta K. Optimization of solar photocatalytic degradation conditions of BPA in water using titanium dioxide. Journal of Photochemistry and Photobiology A Chemistry, 2004, 163(3): 419–424

    Article  CAS  Google Scholar 

  62. Subagio D P, Srinivasan M, Lim M, Lim T T. Photocatalytic degradation of BPA by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor. Applied Catalysis B: Environmental, 2010, 95(3–4): 414–422

    Article  CAS  Google Scholar 

  63. Wang Y, Wang X, Li C M. Electrocatalysis of Pd-Co supported on carbon black or ball-milled carbon nanotubes towards methanol oxidation in alkaline media. Applied Catalysis B: Environmental, 2010, 99(1): 229–234

    Article  CAS  Google Scholar 

  64. Yang J, Dai J, Li J. Synthesis, characterization and degradation of BPA using Pr, N co-doped TiO2 with highly visible light activity. Applied Surface Science, 2011, 257(21): 8965–8973

    Article  CAS  Google Scholar 

  65. Zhou D, Wu F, Deng N, Xiang W. Photooxidation of BPA in water in the presence of ferric and carboxylate salts. Water Research, 2004, 38(19): 4107–4116

    Article  CAS  Google Scholar 

  66. Liu Y, Deng L, Chen Y, Wu F, Deng N. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of BPA induced by Fe(III)-OH complexes in water. Journal of Hazardous Materials, 2007, 139(2): 399–402

    Article  CAS  Google Scholar 

  67. Zhan M, Yang X, Xian Q, Kong L. Photosensitized degradation of BPA involving reactive oxygen species in the presence of humic substances. Chemosphere, 2006, 63(3): 378–386

    Article  CAS  Google Scholar 

  68. Wang C, Zhu L, Song C, Shan G, Chen P. Characterization of photocatalyst Bi3.84W0.16O6.24 and its photodegradation on BPA under simulated solar light irradiation. Applied Catalysis B: Environmental, 2011, 105(1–2): 229–236

    Article  CAS  Google Scholar 

  69. Rosenfeldt E J, Linden K G. Degradation of endocrine disrupting chemicals BPA, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environmental Science and Technology, 2004, 38(20): 5476–5483

    Article  CAS  Google Scholar 

  70. Chen B, Yang C, Goh N K. Photolysis pathway of nitroaromatic compounds in aqueous solutions in the UV/H2O2 process. Journal of Environmental Sciences (China), 2006, 18(6): 1061–1064

    Article  CAS  Google Scholar 

  71. Chen P J, Kullman SW, Hinton D E, Linden K G. Comparisons of polychromatic and monochromatic UV-based treatments of BPA in water via toxicity assessments. Chemosphere, 2007, 68(6): 1041–1049

    Article  CAS  Google Scholar 

  72. Chen P J, Linden K G, Hinton D E, Kashiwada S, Rosenfeldt E J, Kullman S W. Biological assessment of BPA degradation in water following direct photolysis and UV advanced oxidation. Chemosphere, 2006, 65(7): 1094–1102

    Article  CAS  Google Scholar 

  73. Irmak S, Erbatur O, Akgerman A. Degradation of 17β-estradiol and BPA in aqueous medium by using ozone and ozone/UV techniques. Journal of Hazardous Materials, 2005, 126(1–3): 54–62

    Article  CAS  Google Scholar 

  74. Rivas F J, Carbajo M, Beltrán F, Gimeno O, Frades J. Comparison of different advanced oxidation processes (AOPs) in the presence of perovskites. Journal of Hazardous Materials, 2008, 155(3): 407–414

    Article  CAS  Google Scholar 

  75. Katsumata H, Kawabe S, Kaneco S, Suzuki T, Ohta K. Degradation of BPA in water by the photo-Fenton reaction. Journal of Photochemistry and Photobiology A Chemistry, 2004, 162(2): 297–305

    Article  CAS  Google Scholar 

  76. Inoue M, Masuda Y, Okada F, Sakurai A, Takahashi I, Sakakibara M. Degradation of BPA using sonochemical reactions. Water Research, 2008, 42(6–7): 1379–1386

    Article  CAS  Google Scholar 

  77. Torres R A, Sarantakos G, Combet E, Pétrier C, Pulgarin C. Sequential helio-photo-Fenton and sonication processes for the treatment of BPA. Journal of Photochemistry and Photobiology A Chemistry, 2008, 199(2): 197–203

    Article  CAS  Google Scholar 

  78. Neamţu M, Frimmel F H. Degradation of endocrine disrupting BPA by 254 nm irradiation in different water matrices and effect on yeast cells. Water Research, 2006, 40(20): 3745–3750

    Article  Google Scholar 

  79. Huang Y F, Huang Y H. Behavioral evidence of the dominant radicals and intermediates involved in BPA degradation using an efficient Co2+/PMS oxidation process. Journal of Hazardous Materials, 2009, 167(1–3): 418–426

    Article  CAS  Google Scholar 

  80. Torres-Palma R A, Nieto J I, Combet E, Pétrier C, Pulgarin C. An innovative ultrasound, Fe2+ and TiO2 photoassisted process for BPA mineralization. Water Research, 2010, 44(7): 2245–2252

    Article  CAS  Google Scholar 

  81. Huang Y F, Huang Y H. Identification of produced powerful radicals involved in the mineralization of BPA using a novel UVNa2S2O8/H2O2-Fe(II,III) two-stage oxidation process. Journal of Hazardous Materials, 2009, 162(2–3): 1211–1216

    Article  CAS  Google Scholar 

  82. Pan B, Lin D, Mashayekhi H, Xing B. Adsorption and hysteresis of BPA and 17α-ethinyl estradiol on carbon nanomaterials. Environmental Science and Technology, 2008, 42(15): 5480–5485

    Article  CAS  Google Scholar 

  83. Nakanishi A, Tamai M, Kawasaki N, Nakamura T, Tanada S. Adsorption characteristics of BPA onto carbonaceous materials produced from wood chips as organic waste. Journal of Colloid and Interface Science, 2002, 252(2): 393–396

    Article  CAS  Google Scholar 

  84. Bautista-Toledo I, Ferro-García M A, Rivera-Utrilla J, Moreno-Castilla C, Vegas Fernández F J. BPA removal from water by activated carbon. Effects of carbon characteristics and solution chemistry. Environmental Science and Technology, 2005, 39(16): 6246–6250

    Article  CAS  Google Scholar 

  85. Tsai W T, Lai C W, Su T Y. Adsorption of BPA from aqueous solution onto minerals and carbon adsorbents. Journal of Hazardous Materials, 2006, 134(1–3): 169–175

    Article  CAS  Google Scholar 

  86. Liu G, Ma J, Li X, Qin Q. Adsorption of BPA from aqueous solution onto activated carbons with different modification treatments. Journal of Hazardous Materials, 2009, 164(2–3): 1275–1280

    Article  CAS  Google Scholar 

  87. Asada T, Oikawa K, Kawata K, Ishihara S, Iyobe T, Yamada A. Study of removal effect of BPA and beta-estradiol by porous carbon. Journal of Health Science, 2004, 50(6): 588–593

    Article  CAS  Google Scholar 

  88. Sui Q, Huang J, Liu Y, Chang X, Ji G, Deng S, Xie T, Yu G. Rapid removal of BPA on highly ordered mesoporous carbon. Journal of Environmental Sciences (China), 2011, 23(2): 177–182

    Article  CAS  Google Scholar 

  89. Yoon Y, Westerhoff P, Snyder S A, Esparza M. HPLC-fluorescence detection and adsorption of BPA, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon. Water Research, 2003, 37(14): 3530–3537

    Article  CAS  Google Scholar 

  90. Mao M, Liu Z, Wang T, Yu B, Wen X, Yang K, Zhao C. Polysulfone — activated carbon hybrid particles for the removal of BPA. Separation Science and Technology, 2006, 41(3): 515–529

    Article  CAS  Google Scholar 

  91. Pan J, Yao H, Li X, Wang B, Huo P, Xu W, Ou H, Yan Y. Synthesis of chitosan/γ-Fe2O3/fly-ash-cenospheres composites for the fast removal of BPA and 2,4,6-trichlorophenol from aqueous solutions. Journal of Hazardous Materials, 2011, 190(1–3): 276–284

    Article  CAS  Google Scholar 

  92. Matsushita K, Shimada M, Okayama T. Adsorption properties of BPA on activated carbon prepared from wastepaper. Sen’i Gakkaishi, 2009, 65(11): 287–291

    Article  CAS  Google Scholar 

  93. Zhang Y, Causserand C, Aimar P, Cravedi J P. Removal of BPA by a nanofiltration membrane in view of drinking water production. Water Research, 2006, 40(20): 3793–3799

    Article  CAS  Google Scholar 

  94. Dong B, Wang L, Gao N. The removal of BPA by ultrafiltration. Desalination, 2008, 221(1–3): 312–317

    CAS  Google Scholar 

  95. Dong B, Chu H, Wang L, Xia S, Gao N. The removal of BPA by hollow fiber microfiltration membrane. Desalination, 2010, 250(2): 693–697

    Article  CAS  Google Scholar 

  96. Wu S, Dong B, Huang Y. Adsorption of BPA by polysulphone membrane. Desalination, 2010, 253(1–3): 22–29

    CAS  Google Scholar 

  97. Liu L, Zheng G, Yang F. Adsorptive removal and oxidation of organic pollutants from water using a novel membrane. Chemical Engineering Journal, 2010, 156(3): 553–556

    Article  CAS  Google Scholar 

  98. Kim J H, Kim S, Lee C H, Kwon H H, Lee S. A novel nanofiltration hybrid system to control organic micro-pollutants: application of dual functional adsorbent/catalyst. Desalination, 2008, 231(1–3): 276–282

    Article  CAS  Google Scholar 

  99. Chin S S, Lim T M, Chiang K, Fane A G. Factors affecting the performance of a low-pressure submerged membrane photocatalytic reactor. Chemical Engineering Journal, 2007, 130(1): 53–63

    Article  CAS  Google Scholar 

  100. Zhang T, Zhang X, Yan X, Ng J, Wang Y, Sun D D. Removal of BPA via a hybrid process combining oxidation on β-MnO2 nanowires with microfiltration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392(1): 198–204

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuying Huang or Xiaohong Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Zhang, J., Feng, P. et al. Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies. Front. Environ. Sci. Eng. 9, 16–38 (2015). https://doi.org/10.1007/s11783-014-0697-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-014-0697-2

Keywords

Navigation