Skip to main content
Log in

Research progress on hydrothermal dissolution and hydrolysis of lignocellulose and lignocellulosic waste

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Ethanol production from lignocellulosic waste has attracted considerable attention because of its feasibility and the generation of valuable products. Previous studies have shown that pretreatment and hydrolysis are key processes for lignocellulose conversion. Hydrothermal process is a promising technique because of its efficiency to break down the lignocellulosic structures and produce fermentable hexoses. Most studies in this field have therefore focused on understanding these processes or optimizing the parameters, but commonly reported low yields of fermentable hexoses. The inability to produce high yields of fermentable hexoses is mainly attributed to inadequate information on the conversion mechanisms of lignocellulose, particularly the reaction rules of dissolution, which is a limiting step in the entire conversion process. This paper critically reviewed the progress done in the research and development of the hydrothermal dissolution and hydrolysis of lignocellulose. Principles, processes, and related studies on separate dissolution and asynchronous hydrolysis of lignin, hemicellulose, and cellulose are presented. Potential research prospects are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu Y, Lou X, Wu H. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy & Fuels, 2008, 22(1): 46–60

    Article  CAS  Google Scholar 

  2. Mosier N, Wyman C, Dale B, Elander R, Lee Y Y, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 2005, 96(6): 673–686

    Article  CAS  Google Scholar 

  3. Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106(9): 4044–4098

    Article  CAS  Google Scholar 

  4. Sun Y, Zhuang J, Lin L, Ouyang P. Clean conversion of cellulose into fermentable glucose. Biotechnology Advances, 2009, 27(5): 625–632

    Article  CAS  Google Scholar 

  5. Varga E, Schmidt A S, Réczey K, Thomsen A B. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility. Applied Biochemistry and Biotechnology, 2003, 104(1): 37–50

    Article  CAS  Google Scholar 

  6. Carrillo F, Lis M J, Colom X, López-Mesas M, Valldeperas J. Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: Kinetic study. Process Biochemistry, 2005, 40(10): 3360–3364

    Article  CAS  Google Scholar 

  7. Garrote G, Domínguez H, Parajó J C. Hydrothermal processing of lignocellulosic materials. Holz als Roh-und Werkstoff, 1999, 57(3): 191–202

    Article  CAS  Google Scholar 

  8. Bonn G, Concin R, Bobleter O. Hydrothermolysis-a new process for the utilization of biomass. Wood Science and Technology, 1983, 17(3): 195–202

    Article  CAS  Google Scholar 

  9. Adschiri T, Hirose S, Malaluan R, Arai K. Noncatalytic conversion of cellulose in supercritical and subcritical water. Journal of Chemical Engineering of Japan, 1993, 26(6): 676–680

    Article  CAS  Google Scholar 

  10. Díaz M J, Cara C, Ruiz E, Romero I, Moya M, Castro E. Hydrothermal pre-treatment of rapeseed straw. Bioresource Technology, 2010, 101(7): 2428–2435

    Article  Google Scholar 

  11. Boussarsar H, Rogé B, Mathlouthi M. Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresource Technology, 2009, 100(24): 6537–6542

    Article  CAS  Google Scholar 

  12. Zhuang X, Yuan Z, Ma L, Wu C, Xu M, Xu J, Zhu S, Qi W. Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water. Biotechnology Advances, 2009, 27(5): 578–582

    Article  CAS  Google Scholar 

  13. Kang P, Qin W, Zheng ZM, Dong C Q, Yang Y P. Theoretical study on the mechanisms of cellulose dissolution and precipitation in the phosphoric acid-acetone process. Carbohydrate Polymers, 2012, 90(4): 1771–1778

    Article  CAS  Google Scholar 

  14. Zhao Y, Lu WJ, Wang H T. Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology. Chemical Engineering Journal, 2009, 150(2–3): 411–417

    Article  CAS  Google Scholar 

  15. Zhao Y, Lu W J, Wang H T, Yang J L. Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology. Bioresource Technology, 2009, 100(23): 5884–5889

    Article  CAS  Google Scholar 

  16. Jin F, Enomoto H. Application of hydrothermal reaction to conversion of plant-origin biomasses into acetic and lactic acids. Journal of Materials Science, 2008, 43(7): 2463–2471

    Article  CAS  Google Scholar 

  17. Jin F, Zhou Z, Kishita A, Enomoto H. Hydrothermal conversion of biomass into acetic acid. Journal of Materials Science, 2006, 41(5): 1495–1500

    Article  CAS  Google Scholar 

  18. Thomsen MH, Thygesen A, Thomsen A B. Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Bioresource Technology, 2008, 99(10): 4221–4228

    Article  CAS  Google Scholar 

  19. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Ara K. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Industrial & Engineering Chemistry Research, 2000, 39(8): 2883–2890

    Article  CAS  Google Scholar 

  20. Kabyemela B M, Adschiri T, Malaluan R M, Arai K. Kinetics of Glucose Epimerization and decomposition in subcritical and supercritical water. Industrial & Engineering Chemistry Research, 1997, 36(5): 1552–1558

    Article  CAS  Google Scholar 

  21. Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K. Cellulose hydrolysis in subcritical and supercritical water. Journal of Supercritical Fluids, 1998, 13(1–3): 261–268

    Article  CAS  Google Scholar 

  22. Resende F L P, Neff M E, Savage P E. Noncatalytic gasification of cellulose in supercritical water. Energy & Fuels, 2007, 21(6): 3637–3643

    Article  CAS  Google Scholar 

  23. Macdonald D D, Kriksunov L B. Probing the chemical and electrochemical properties of SCWO systems. Electrochimica Acta, 2001, 47(5): 775–790

    Article  CAS  Google Scholar 

  24. Saka S, Ueno T. Chemical conversion of various celluloses to glucose and its derivatives in supercritical water. Cellulose (London, England), 1999, 6(3): 177–191

    CAS  Google Scholar 

  25. Yoshida T, Nonaka H, Matsumura Y. Hydrothermal treatment of cellulose as a pretreatment for ethanol fermentation: Cellulose hydrolysis experiments. Journal of the Japan Institute of Energy, 2005, 84(7): 544–548

    Article  CAS  Google Scholar 

  26. Ehara K, Saka S. A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water. Cellulose (London, England), 2002, 9(3/4): 301–311

    CAS  Google Scholar 

  27. Jin F, Zhou Z, Enomoto H, Moriya T, Higashijima H. Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid-base catalytic effect of subcritical water. Chemistry Letters, 2004, 33(2): 126–127

    Article  CAS  Google Scholar 

  28. Kabyemela B M, Takigawa M, Adschiri T, Malaluan R M, Arai K. Mechanism and kinetics of cellobiose decomposition in sub- and supercritical water. Industrial & Engineering Chemistry Research, 1998, 37(2): 357–361

    Article  CAS  Google Scholar 

  29. Feng W, van der Kooi H J, de Swaan Arons J. Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. Chemical Engineering and Processing, 2004, 43(12): 1459–1467

    Article  CAS  Google Scholar 

  30. Mochidzuki K, Sakoda A, Suzuki M. Liquid-phase thermogravimetric measurement of reaction kinetics of the conversion of biomass wastes in pressurized hot water: a kinetic study. Advances in Environmental Research, 2003, 7(2): 421–428

    Article  CAS  Google Scholar 

  31. Ogihara Y, Smith R L Jr, Inomata H, Arai K. Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities. Cellulose (London, England), 2005, 12(6): 595–606

    CAS  Google Scholar 

  32. Ehara K, Saka S. Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments. Journal of Wood Science, 2005, 51(2): 148–153

    Article  CAS  Google Scholar 

  33. Zhao Y, Lu W J, Wang H T, Li D. Combined supercritical and subcritical process for cellulose hydrolysis to fermentable hexoses. Environmental Science & Technology, 2009, 43(5): 1565–1570

    Article  CAS  Google Scholar 

  34. Petersen M O, Larsen J, Thomsen M H. Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass and Bioenergy, 2009, 33(5): 834–840

    Article  CAS  Google Scholar 

  35. Zhao Y, Wang H T, Lu W J, Wang H. Combined supercritical and subcritical conversion of cellulose for fermentable hexose production in a flow reaction system. Chemical Engineering Journal, 2011, 166(3): 868–872

    Article  CAS  Google Scholar 

  36. Zhao Y, Lu W J, Wu H Y, Liu J W, Wang H T. Optimization of supercritical phase and combined supercritical/subcritical conversion of lignocellulose for hexose production by using a flow reaction system. Bioresource Technology, 2012, 126: 391–396

    Article  CAS  Google Scholar 

  37. Sına>g A, Gülbaya S, Uskana B, Güllü M. Comparative studies of intermediates produced from hydrothermal treatments of sawdust and cellulose. Journal of Supercritical Fluids, 2009, 50(2): 121–127

    Article  Google Scholar 

  38. Kumar S, Gupta R B. Hydrolysis of microcrystalline cellulose in subcritical and supercritical water in a continuous flow reactor. Industrial & Engineering Chemistry Research, 2008, 47(23): 9321–9329

    Article  CAS  Google Scholar 

  39. Matsunaga M, Matsui H, Otsuka Y, Yamamoto S. Chemical conversion of wood by treatment in a semi-batch reactor with subcritical water. Journal of Supercritical Fluids, 2008, 44(3): 364–369

    Article  CAS  Google Scholar 

  40. Rogalinski T, Liu K, Albrecht T, Brunner G. Hydrolysis kinetics of biopolymers in subcritical water. Journal of Supercritical Fluids, 2008, 46(3): 335–341

    Article  CAS  Google Scholar 

  41. Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 2008, 9(9): 1621–1651

    Article  CAS  Google Scholar 

  42. Matsumura Y, Sasaki M, Okuda K, Takami S, Ohara S, Umetsu M, Adschiri T. Supercritical water treatment of biomass for energy and material recovery. Combustion Science and Technology, 2006, 178(1–3): 509–536

    Article  CAS  Google Scholar 

  43. Lu X, Yamauchi K, Phaiboonsilpa N, Saka S. Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. Journal of Wood Science, 2009, 55(5): 367–375

    Article  CAS  Google Scholar 

  44. Suryawati L, Wilkins MR, Bellmer D D, Huhnke R L, Maness N O, Banat I M. Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Process Biochemistry, 2009, 44(5): 540–545

    Article  CAS  Google Scholar 

  45. Le Moigne N, Navard P. Dissolution mechanisms of wood cellulose fibres in NaOH-water. Cellulose (London, England), 2010, 17(1): 31–45

    Google Scholar 

  46. Driemeier C, Pimenta M T B, Rocha G J M, Oliveira M M, Mello D B, Maziero P, Goncalves A R. Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose. Cellulose (London, England), 2011, 18(6): 1509–1519

    CAS  Google Scholar 

  47. Kumar S, Gupta R, Lee Y Y, Gupta R B. Cellulose pretreatment in subcritical water: effect of temperature on molecular structure and enzymatic reactivity. Bioresource Technology, 2010, 101(4): 1337–1347

    Article  CAS  Google Scholar 

  48. Ibbett R, Gaddipati S, Davies S, Hill S, Tucker G. The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal-analytical and complementary studies. Bioresource Technology, 2011, 102(19): 9272–9278

    Article  CAS  Google Scholar 

  49. Kamio E, Sato H, Takahashi S, Noda H, Fukuhara C, Okamura T. Liquefaction kinetics of cellulose treated by hot compressed water under variable temperature conditions. Journal of Materials Science, 2008, 43(7): 2179–2188

    Article  CAS  Google Scholar 

  50. Saka S. Recent progress in supercritical fluid science for biofuel production from woody biomass. Forestry Studies in China, 2006, 8(3): 9–15

    Article  CAS  Google Scholar 

  51. Tymchyshyn M, Xu C C. Liquefaction of bio-mass in hotcompressed water for the production of phenolic compounds. Bioresource Technology, 2010, 101(7): 2483–2490

    Article  CAS  Google Scholar 

  52. Lü X, Saka S. New insights on monosaccharides’ isomerization, dehydration and fragmentation in hot-compressed water. Journal of Supercritical Fluids, 2012, 61: 146–156

    Article  Google Scholar 

  53. Hosoya T, Kawamoto H, Saka S. Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature. Journal of Analytical and Applied Pyrolysis, 2007, 80(1): 118–125

    Article  CAS  Google Scholar 

  54. Hashaikeh R, Fang Z, Butler I S, Hawari J, Kozinski J A. Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel, 2007, 86(10–11): 1614–1622

    Article  CAS  Google Scholar 

  55. Lü X, Saka S. Hydrolysis of Japanese beech by batch and semi-flow water under subcritical temperatures and pressures. Biomass and Bioenergy, 2010, 34(8): 1089–1097

    Article  Google Scholar 

  56. Zhang C, Zhu J Y, Gleisner R, Sessions J. Fractionation of forest residues of douglas-fir for fermentable sugar production by SPORL pretreatment. Bioenergy Research, 2012, 5(4): 978–988

    Article  CAS  Google Scholar 

  57. Van Dyk J S, Pletschke B I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnology Advances, 2012, 30(6): 1458–1480

    Article  Google Scholar 

  58. Chu Q L, Li X, Ma B, Xu Y, Ouyang J, Zhu J J, Yu S Y, Yong Q. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue. Bioresource Technology, 2012, 123: 699–702

    Article  CAS  Google Scholar 

  59. Wei L, Shrestha A, Tu M, Adhikari S. Effects of surfactant on biochemical and hydrothermal conversion of softwood hemicellulose to ethanol and furan derivatives. Process Biochemistry, 2011, 46(9): 1785–1792

    Article  CAS  Google Scholar 

  60. Faga B A, Wilkins M R, Banat I M. Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D(5)A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresource Technology, 2010, 101(7): 2273–2279

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Lu, W., Chen, J. et al. Research progress on hydrothermal dissolution and hydrolysis of lignocellulose and lignocellulosic waste. Front. Environ. Sci. Eng. 8, 151–161 (2014). https://doi.org/10.1007/s11783-013-0607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-013-0607-z

Keywords

Navigation