Skip to main content
Log in

Microwave-assisted rapid synthesis of ovalbumin-stabilized gold nanoclusters for picric acid determination

微波辅助快速合成卵清蛋白金纳米簇检测苦味酸

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this work, ovalbumin-stabilized gold nanoclusters (OVA-Au NCs) fluorescent nanoprobes were synthesized by microwave heating and applied to detect picric acid (PA). The nanoprobes emitted red fluorescence with the maximum fluorescence peak of 680 nm under the excitation wavelength of 350 nm, and the Stokes shifts could be up to 330 nm which could effectively eliminate the interference of resonance scattering light. Compared with hydrothermal method, the synthesis method was simple and fast, and only took 50 s. Due to the absorption peak of PA overlapped with the emission peak of OVA-Au NCs in a large range, PA could selectively quench the fluorescence of OVA-Au NCs based on the inner filter effect (IFE) and a quick response time (1 min). Therefore, a new and sensitive method for PA monitoring was established. Under the optimal conditions, the concentration of PA demonstrated a satisfactory linear correlation with the fluorescence quenching degree ΔF/F0 of the sensing system in the range of 20–240 µmol/L with the detection limit of 6.4 µmol/L. The proposed method is simple, fast, accurate, and easy to realize real-time monitoring.

摘要

本文采用微波加热法快速合成了卵清蛋白金纳米簇荧光探针(OVA-Au NCs)并应用于检测苦味酸 (PA)。该探针在350 nm 波长激发下,能发射红色荧光,最大发射荧光峰为680 nm,Stokes 位移高达 330 nm, 可有效消除共振散射光的干扰。该合成方法与水热法相比,步骤简单快速,仅用50 s 即可完 成。由于PA的吸收光谱与OVA-Au NCs的激发光谱有较大范围的重叠,基于内滤效应(IFE) PA可选择 性猝灭OVA-Au NCs的荧光,据此建立了检测苦味酸的新方法。在最佳实验条件下,在20~240 μmol/L 范围内,检测体系的荧光猝灭效率ΔF/F0与PA的浓度具有良好的线性关系,r 为0.9985,检测限为 6.4 μmol/L。该方法简便、快速、准确,易于实现实时监测。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. HENG Xing, LIU Wu-gao, CHU Wei-hua. Identification of choline-degrading bacteria from healthy human feces and used for screening of trimethylamine (TMA)-lyase inhibitors [J]. Microbial Pathogenesis, 2021, 152: 104658. DOI: https://doi.org/10.1016/j.micpath.2020.104658.

    Article  Google Scholar 

  2. PRAMANIK B, DAS S, DAS D. Aggregation-directed high fidelity sensing of picric acid by a perylenediimide-based luminogen [J]. Chemistry — an Asian Journal, 2020, 15(24): 4291–4296. DOI: https://doi.org/10.1002/asia.202001184.

    Article  Google Scholar 

  3. THACKRAY R, PALMIERE E J, KHALID O. Novel etching technique for delineation of prior-austenite grain boundaries in low, medium and high carbon steels [J]. Materials (Basel, Switzerland), 2020, 13(15): 3296. DOI: https://doi.org/10.3390/ma13153296.

    Article  Google Scholar 

  4. KAJA S, DAMERA D P, NAG A. A metal-enhanced fluorescence sensing platform for selective detection of picric acid in aqueous medium [J]. Analytica Chimica Acta, 2020, 1129: 12–23. DOI: https://doi.org/10.1016/j.aca.2020.07.001.

    Article  Google Scholar 

  5. KUMAR G, SONI R K. Bimetallic Ag-Au alloy nanocubes for SERS based sensitive detection of explosive molecules [J]. Nanotechnology, 2020, 31(50): 505504. DOI: https://doi.org/10.1088/1361-6528/abb628.

    Article  Google Scholar 

  6. VENDAMANI V S, BEERAM R, RAO S V S N, et al. Trace level detection of explosives and pesticides using robust, low-cost, free-standing silver nanoparticles decorated porous silicon [J]. Optics Express, 2021, 29(19): 30045–30061. DOI: https://doi.org/10.1364/OE.434275.

    Article  Google Scholar 

  7. ZHANG Ming, TANG Fang-liang, XU Jian-fen, et al. Rapid determination of benzidine, picric acid, carbaryl, atrazine, and deltamethrin in surface water by ultra-performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2018, 36(9): 866–872. DOI: https://doi.org/10.3724/SP.J.1123.2018.04025.

    Article  Google Scholar 

  8. SIDDIQUE A B, PRAMANICK A K, CHATTERJEE S, et al. Amorphous carbon dots and their remarkable ability to detect 2, 4, 6-trinitrophenol [J]. Scientific Reports, 2018, 8(1): 9770. DOI: https://doi.org/10.1038/s41598-018-28021-9.

    Article  Google Scholar 

  9. MOHAN J M, AMREEN K, KULKARNI M B, et al. Optimized ink jetted paper device for electroanalytical detection of picric acid [J]. Colloids and Surfaces B: Biointerfaces, 2021, 208: 112056. DOI: https://doi.org/10.1016/j.colsurfb.2021.112056.

    Article  Google Scholar 

  10. CHANDRA S, BANO D, PRADHAN P, et al. Nitrogen/sulfur-co-doped carbon quantum dots: A biocompatible material for the selective detection of picric acid in aqueous solution and living cells [J]. Analytical and Bioanalytical Chemistry, 2020, 412(15): 3753–3763. DOI: https://doi.org/10.1007/s00216-020-02629-1.

    Article  Google Scholar 

  11. RAJALAKSHMI A V, PALANISAMI N. Y-shaped ferrocene/non-ferrocene conjugated quinoxalines for colorimetric and fluorimetric detection of picric acid [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 228: 117812. DOI: https://doi.org/10.1016/j.saa.2019.117812.

    Article  Google Scholar 

  12. LIU Jin-shui, FU Ting, LIU Chen-fu, et al. Sensitive detection of picric acid in an aqueous solution using fluorescent nonconjugated polymer dots as fluorescent probes [J]. Nanotechnology, 2021, 32(35): 355503. DOI: https://doi.org/10.1088/1361-6528/ac04d1.

    Article  Google Scholar 

  13. DEY S, SAHA A, KUMAR P, et al. Self-assembled nanomaterials of naphthalene monoimide in aqueous medium for multimodal detection of picric acid [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 423: 113599. DOI: https://doi.org/10.1016/j.jphotochem.2021.113599.

    Article  Google Scholar 

  14. YANG Kai, LUO Shi-he, CHEN Si-hong, et al. Simple inorganic base promoted C-N and C-C formation: Synthesis of benzo[4, 5]imidazo[1, 2-a]pyridines as functional AIEgens used for detecting picric acid [J]. Organic & Biomolecular Chemistry, 2021, 19(37): 8133–8139. DOI: https://doi.org/10.1039/d1ob01424b.

    Article  Google Scholar 

  15. GOWRI A, VIGNESH R, KATHIRAVAN A. Anthracene based AIEgen for picric acid detection in real water samples [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 220: 117144. DOI: https://doi.org/10.1016/j.saa.2019.117144.

    Article  Google Scholar 

  16. GUO Ya-hui, AMUNYELA H T N N, CHENG Yu-liang, et al. Natural protein-templated fluorescent gold nanoclusters: Syntheses and applications [J]. Food Chemistry, 2021, 335: 127657. DOI: https://doi.org/10.1016/j.foodchem.2020.127657.

    Article  Google Scholar 

  17. YANG Jing-jing, WANG Feng-long, YUAN Hui-qing, et al. Recent advances in ultra-small fluorescent Au nanoclusters toward oncological research [J]. Nanoscale, 2019, 11(39): 17967–17980. DOI: https://doi.org/10.1039/c9nr04301b.

    Article  Google Scholar 

  18. XIE Jian-ping, ZHENG Yuan-gang, YING J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters [J]. Journal of the American Chemical Society, 2009, 131(3): 888–889. DOI: https://doi.org/10.1021/ja806804u.

    Article  Google Scholar 

  19. MIAO Wen-jing, WANG Lei, LIU Qin, et al. Rare earth ions-enhanced gold nanoclusters as fluorescent sensor array for the detection and discrimination of phosphate anions [J]. Chemistry — an Asian Journal, 2021, 16(3): 247–251. DOI: https://doi.org/10.1002/asia.202001296.

    Article  Google Scholar 

  20. JIANG Cui-feng, ZHANG Cong, SONG Juan, et al. Cytidine-gold nanoclusters as peroxidase mimetic for colorimetric detection of glutathione (GSH), glutathione disulfide (GSSG) and glutathione reductase (GR) [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 250: 119316. DOI: https://doi.org/10.1016/j.saa.2020.119316.

    Article  Google Scholar 

  21. SELVAPRAKASH K, CHEN Y C. Using protein-encapsulated gold nanoclusters as photoluminescent sensing probes for biomolecules [J]. Biosensors and Bioelectronics, 2014, 61: 88–94. DOI: https://doi.org/10.1016/j.bios.2014.04.055.

    Article  Google Scholar 

  22. RYAVANAKI L, TSAI H, FUH C B. Microwave synthesis of gold nanoclusters with garlic extract modifications for the simple and sensitive detection of lead ions [J]. Nanomaterials (Basel, Switzerland), 2020, 10(1): 94. DOI: https://doi.org/10.3390/nano10010094.

    Article  Google Scholar 

  23. CHEN Yi-fan, QIAO Juan, LIU Qian-rong, et al. Ovalbumin-stabilized gold nanoclusters with ascorbic acid as reducing agent for detection of serum copper [J]. Chinese Chemical Letters, 2018, 29(3): 366–370. DOI: https://doi.org/10.1016/j.cclet.2017.10.014.

    Article  Google Scholar 

  24. MARTÍN-BARREIRO A, de MARCOS S, de LA FUENTE J M, et al. Gold nanocluster fluorescence as an indicator for optical enzymatic nanobiosensors: Choline and acetylcholine determination [J]. Sensors and Actuators B: Chemical, 2018, 277: 261–270. DOI: https://doi.org/10.1016/j.snb.2018.08.116.

    Article  Google Scholar 

  25. NIE Lei, ZHANG Jing-jing, WU Qiao-yun, et al. Fabrication of micropatterned gold nanoparticles on graphene oxide nanosheet via thiol-Michael addition click chemistry [J]. Materials Letters, 2020, 261: 127014. DOI: https://doi.org/10.1016/j.matlet.2019.127014.

    Article  Google Scholar 

  26. ZHENG Huan-huan, WAN Peng-fei, QI Sheng-da, et al. Investigating the interaction between DNA-templated gold nanoclusters and HSA via spectroscopy [J]. New Journal of Chemistry, 2020, 44(33): 14060–14066. DOI: https://doi.org/10.1039/D0NJ02075C.

    Article  Google Scholar 

  27. KHORMALI K, MIZWARI Z M, MASOUMEH G S, et al. Novel Dy2O3/ZnO-Au ternary nanocomposites: Green synthesis using pomegranate fruit extract, characterization and their photocatalytic and antibacterial properties [J]. Bioorganic Chemistry, 2021, 115: 105204. DOI: https://doi.org/10.1016/j.bioorg.2021.105204.

    Article  Google Scholar 

  28. YUE Yuan, LI Hong-wei, LIU Tian-ying, et al. Exploring the role of ligand-BSA in the response of BSA-protected gold-nanoclusters to silver (I) ions by FT-IR and circular dichroism spectra [J]. Vibrational Spectroscopy, 2014, 74: 137–141. DOI: https://doi.org/10.1016/j.vibspec.2014.04.005.

    Article  Google Scholar 

  29. PARAKNOWITSCH J P, ZHANG Yuan-jian, WIENERT B, et al. Nitrogen- and phosphorus-co-doped carbons with tunable enhanced surface areas promoted by the doping additives [J]. Chemical Communications (Cambridge, England), 2013, 49(12): 1208–1210. DOI: https://doi.org/10.1039/c2cc37398j.

    Article  Google Scholar 

  30. GAO Yi-fang, JIAO Yuan, LU Wen-jing, et al. Carbon dots with red emission as a fluorescent and colorimeteric dual-readout probe for the detection of chromium (VI) and cysteine and its logic gate operation [J]. Journal of Materials Chemistry B, 2018, 6(38): 6099–6107. DOI: https://doi.org/10.1039/c8tb01580e.

    Article  Google Scholar 

  31. FAN Peng-fei, LIU Can, HU Cong-cong, et al. Orange-emissive N, S-co-doped carbon dots for label-free and sensitive fluorescence assay of vitamin B12 [J]. New Journal of Chemistry, 2022, 46(2): 877–882. DOI: https://doi.org/10.1039/D1NJ04706J.

    Article  Google Scholar 

  32. JIN Li-hua, SHANG Li, GUO Shao-jun, et al. Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose [J]. Biosensors and Bioelectronics, 2011, 26(5): 1965–1969. DOI: https://doi.org/10.1016/j.bios.2010.08.019.

    Article  Google Scholar 

  33. WANG Lu-liang, QIAO Juan, LIU Hui-hui, et al. Ratiometric fluorescent probe based on gold nanoclusters and alizarin red-boronic acid for monitoring glucose in brain microdialysate [J]. Analytical Chemistry, 2014, 86(19): 9758–9764. DOI: https://doi.org/10.1021/ac5023293.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FAN Peng-fei and LIU Can provided and analyzed the measured data, and established the method. LI Qian-ji and HU Cong-cong validated the proposed method with practical experiments. WU Xi-wen and ZHANG Xiao-huan analyzed the calculated results. The initial draft of the manuscript was written by FAN Peng-fei and LIU Can. YANG Sheng-yuan and LIANG Hao edited the manuscript and provided projects support. All authors replied to reviewers’ comments and revised the final version.

Corresponding authors

Correspondence to Hao Liang  (梁好) or Sheng-yuan Yang  (杨胜园).

Additional information

Conflict of interest

FAN Peng-fei, LIU Can, LI Qian-ji, HU Cong-cong, WU Xi-wen, ZHANG Xiao-huan, LIANG Hao and YANG Sheng-yuan declare that they have no conflict of interest.

Foundation item: Projects(82073604, 81903369) supported by the National Natural Science Foundation of China; Project (S202010555075) supported by the National Innovation Training Program for College Students, China; Project (CX20210962) supported by the Postgraduate Research and Innovation Project of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Pf., Liu, C., Li, Qj. et al. Microwave-assisted rapid synthesis of ovalbumin-stabilized gold nanoclusters for picric acid determination. J. Cent. South Univ. 30, 74–84 (2023). https://doi.org/10.1007/s11771-023-5224-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5224-9

Key words

关键词

Navigation