Skip to main content
Log in

Numerical investigation of flow and heat transfer behind a two-dimensional backward-facing step equipped with a semi-porous baffle

流体在带半多孔挡板的二维后向台阶后方流动与传热的数值研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The backward-facing step is a critical problem existing in many engineering and industrial applications. In this study, a semi-porous baffle (the root of the baffle is a porous medium and the tip is solid) is placed behind the step. The effects of the length of the porous part, and the baffle location on the energy transfer and pressure drop are studied in different Reynolds numbers (Re=100, 200, 300, 400, 500). The effect of the Darcy number of the porous medium on the aforementioned parameters is also investigated. Both the local maximum and average relative Nusselt numbers (divided by the Nusselt of the base case with no baffle at the same Reynolds) and relative pressure drop (calculated as the relative Nusselt number) are reported. The results show that by adoption of the proper length of the porous medium, the average relative and maximum local Nusselt numbers could be enhanced by 20% and 90%, respectively. Low permeable porous media give better energy transfer. For example, porous media with Da=10−5 give 30% better maximum local Nusselt number and about 7% higher average Nusselt number with respect to the same case with Da=10−2.

摘要

后向台阶是工程和工业应用中普遍存在的一个关键问题。在本研究中,在台阶后方放置半多孔挡板(挡板根部是多孔的,顶端是实心的),研究了不同雷诺数(Re=100、200、300、400、500)下多孔部分长度和挡板位置对能量传递和压降的影响,研究了多孔介质达西数对上述参数的影响,得到局部最大和平均相对努塞尔数(努塞尔数除以相同雷诺数下无挡板的情况下的努塞尔数)和相对压降(计算为相对努塞尔数)。结果表明,采用适当多孔介质长度可使平均相对努塞尔数和努塞尔数分别提高20% 和90%。低渗透性的多孔介质提供更好的能量传递。例如,Da=10−5的多孔介质比Da=10−2的多孔介质的最大局部努塞尔数提高了30%,平均努塞尔数提高了约7%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

The depth of domain (m)

C :

Inertia coefficient

C p :

Thermal capacity (J/(kg·K))

Da :

Darcy number

g :

Gravitational acceleration (m/s2)

H :

Total height of the channel (m)

h :

Heat transfer coefficient (W/(m2·K))

S :

Height of the step (m)

H* :

H/S

K :

Permeability of the porous medium(m2)

k :

Thermal conductivity (W/(m·K))

L :

Total length of the channel (m)

L* :

L/S

L :

The channel length before the step (m)

L 1 * :

L 1 /S

:

Mass flow rate (kg/s)

Nu :

Nusselt number

P :

Pressure (Pa)

q″:

Heat flux (W/m2)

Re :

Reynolds number

T :

Temperature (K)

T b :

Bulk temperature (K)

T in :

Inlet temperature (K)

T w :

Wall temperature (K)

u :

x-component of the velocity vector (m/s)

V :

Velocity vector (m/s)

v :

y-component of the velocity vector (m/s)

V* :

Nondimensionalized velocity magnitude

w 1 :

The position of the baffle (m)

W 1 * :

w1/S

w 2 :

Height of porous portion (m)

W 2*:

w2/S

w 3 :

Height of solid portion (m)

α :

Thermal diffusion (m2/s)

γ :

Binary parameter

ε :

Porosity

θ :

Dimensionless Temperature

μ :

Dynamic viscosity (Pa • s)

μ′:

Apparent viscosity (Pa • s)

ν :

kinematic viscosity (m2/s)

ρ :

Density (kg/m3)

ave:

Average

b:

Related to bulk temperature

eff:

Effective

f:

Fluid

in:

Inlet

s:

Solid

w:

Wall

x:

Local value

*:

Dimensionless form

References

  1. GAO Guang-jun, ZHUO T Y, GUAN Wei-yuan. Recent research development of energy-absorption structure and application for railway vehicles [J]. Journal of Central South University, 2020, 27(4): 1012–1038. DOI: https://doi.org/10.1007/s11771-020-4349-3.

    Article  Google Scholar 

  2. SU You-qiang, GONG Feng-qiang, LUO Song, LIU Zhixiang. Experimental study on energy storage and dissipation characteristics of granite under two-dimensional compression with constant confining pressure [J]. Journal of Central South University, 2021, 28(3): 848–865. DOI: https://doi.org/10.1007/s11771-021-4649-2.

    Article  Google Scholar 

  3. BAHMAN P, MOHAMMAD ALI S S. A new hybrid energy absorption mechanism subjected to axial loading [J]. Journal of Central South University, 2020, 27(1): 76–87. DOI: https://doi.org/10.1007/s11771-020-4279-0.

    Article  Google Scholar 

  4. AMIRI A, ARZANI H K, KAZI S N, CHEW B T, BADARUDIN A. Backward-facing step heat transfer of the turbulent regime for functionalized graphene nanoplatelets based water-ethylene glycol nanofluids [J]. International Journal of Heat and Mass Transfer, 2016, 97: 538–546. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.042.

    Article  Google Scholar 

  5. NIE J H, ARMALY B F. Three-dimensional convective flow adjacent to backward-facing step — effects of step height [J]. International Journal of Heat and Mass Transfer, 2002, 45(12): 2431–2438. DOI: https://doi.org/10.1016/S0017-9310(01)00345-3.

    Article  Google Scholar 

  6. TOGUN H, SAFAEI M R, SADRI R, KAZI S N, BADARUDIN A, HOOMAN K, SADEGHINEZHAD E. Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step [J]. Applied Mathematics and Computation, 2014, 239: 153–170. DOI: https://doi.org/10.1016/j.amc.2014.04.051.

    Article  MathSciNet  MATH  Google Scholar 

  7. ABDULRAZZAQ T, TOGUN H, ALSULAMI H, GOODARZI M, SAFAEI M. Heat transfer improvement in a double backward-facing expanding channel using different working fluids [J]. Symmetry, 2020, 12(7): 1088. DOI: https://doi.org/10.3390/sym12071088.

    Article  Google Scholar 

  8. SAFAEI M R, TOGUN H, VAFAI K, KAZI S N, BADARUDIN A. Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids [J]. Numerical Heat Transfer, Part A: Applications, 2014, 66(12): 1321–1340. DOI: https://doi.org/10.1080/10407782.2014.916101.

    Article  Google Scholar 

  9. ABU-NADA E. Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step [J]. International Journal of Heat and Fluid Flow, 2008, 29(1): 242–249. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2007.07.001.

    Article  Google Scholar 

  10. VITTAL SHENOY D, SAFDARI SHADLOO M, PEIXINHO J, HADJADJ A. Direct numerical simulations of laminar and transitional flows in diverging pipes [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 30(1): 75–92. DOI: https://doi.org/10.1108/hff-02-2019-0111.

    Article  Google Scholar 

  11. KUMAR A, DHIMAN A K. Effect of a circular cylinder on separated forced convection at a backward-facing step [J]. International Journal of Thermal Sciences, 2012, 52: 176–185. DOI: https://doi.org/10.1016/j.ijthermalsci.2011.09.014.

    Article  Google Scholar 

  12. ALRASHED A A A A, AKBARI O A, HEYDARI A, TOGHRAIE D, ZARRINGHALAM M, SHABANI G A S, SEIFI A R, GOODARZI M. The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel [J]. Physica B: Condensed Matter, 2018, 537: 176–183. DOI: https://doi.org/10.1016/j.physb.2018.02.022.

    Article  Google Scholar 

  13. AKBARI O A, TOGHRAIE D, KARIMIPOUR A, SAFAEI M R, GOODARZI M, ALIPOUR H, DAHARI M. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water-Al2O3 nanofluid in a rib-microchannel [J]. Applied Mathematics and Computation, 2016, 290: 135–153. DOI: https://doi.org/10.1016/j.amc.2016.05.053.

    Article  MathSciNet  MATH  Google Scholar 

  14. ARMALY B F, DURST F, PEREIRA J C F, SCHÖNUNG B. Experimental and theoretical investigation of backward-facing step flow [J]. Journal of Fluid Mechanics, 1983, 127: 473. DOI: https://doi.org/10.1017/s0022112083002839.

    Article  Google Scholar 

  15. XIE W A, XI G N. Geometry effect on flow fluctuation and heat transfer in unsteady forced convection over backward and forward facing steps [J]. Energy, 2017, 132: 49–56. DOI: https://doi.org/10.1016/j.energy.2017.05.072.

    Article  Google Scholar 

  16. AHMADPOUR M, SIAVASHI M, DORANEHGARD M H. Numerical simulation of two-phase flow in fractured porous media using streamline simulation and IMPES methods and comparing results with a commercial software [J]. Journal of Central South University, 2016, 23(10): 2630–2637. DOI: https://doi.org/10.1007/s11771-016-3324-5.

    Article  Google Scholar 

  17. SIAVASHI M, TALESH BAHRAMI H R, AMINIAN E, SAFFARI H. Numerical analysis on forced convection enhancement in an annulus using porous ribs and nanoparticle addition to base fluid [J]. Journal of Central South University, 2019, 26(5): 1089–1098. DOI: https://doi.org/10.1007/s11771-019-4073-z.

    Article  Google Scholar 

  18. MIRZAEYAN M, TOGHRAIE D. Numerical investigation of laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders [J]. Journal of Central South University, 2019, 26(7): 1976–1999. DOI: https://doi.org/10.1007/s11771-019-4146-z.

    Article  Google Scholar 

  19. ZHAO Chong-bin, HOBBS B, ORD A. Finite element modeling of convective pore-fluid flow in fluid-saturated porous rocks within upper crust: An overview [J]. Journal of Central South University, 2019, 26(3): 501–514. DOI: https://doi.org/10.1007/s11771-019-4022-x.

    Article  Google Scholar 

  20. HUSSAIN Q, ASGHAR S, HAYAT T, ALSAEDI A. Heat transfer in a porous saturated wavy channel with asymmetric convective boundary conditions [J]. Journal of Central South University, 2015, 22(1): 392–401. DOI: https://doi.org/10.1007/s11771-015-2534-6.

    Article  Google Scholar 

  21. LI Chuan-chang, CUI Guo-hua, ZHAI Jian-guang, CHEN Sai-xuan, HU Zhi. Enhanced heat transfer and flow analysis in a backward-facing step using a porous baffle [J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(5): 1919–1932. DOI: https://doi.org/10.1007/s10973-020-09437-w.

    Article  Google Scholar 

  22. TOGUN H. Laminar CuO: Water nano-fluid flow and heat transfer in a backward-facing step with and without obstacle [J]. Applied Nanoscience, 2016, 6(3): 371–378. DOI: https://doi.org/10.1007/s13204-015-0441-7.

    Article  Google Scholar 

  23. HESHMATI A, MOHAMMED H A, DARUS A N. Mixed convection heat transfer of nanofluids over backward facing step having a slotted baffle [J]. Applied Mathematics and Computation, 2014, 240: 368–386. DOI: https://doi.org/10.1016/j.amc.2014.04.058.

    Article  MathSciNet  MATH  Google Scholar 

  24. TSAY Y L, CHANG T S, CHENG J C. Heat transfer enhancement of backward-facing step flow in a channel by using baffle installation on the channel wall [J]. Acta Mechanica, 2005, 174(1): 63–76. DOI: https://doi.org/10.1007/s00707-004-0147-5.

    Article  MATH  Google Scholar 

  25. CHENG J C, TSAY Y L. Effects of solid and slotted baffles on the convection characteristics of backward-facing step flow in a channel [J]. Heat and Mass Transfer, 2006, 42(9): 843–852. DOI: https://doi.org/10.1007/s00231-005-0051-0.

    Article  Google Scholar 

  26. ABU-NADA E. Entropy generation due to heat and fluid flow in backward facing step flow with various expansion ratios [J]. International Journal of Exergy, 2006, 3(4): 419. DOI: https://doi.org/10.1504/ijex.2006.010234.

    Article  Google Scholar 

  27. SELIMEFENDIGIL F, OZCANCOBAN S, OZTOP H F. Electrical conductivity effect on MHD mixed convection of nanofluid flow over a backward-facing step [J]. Journal of Central South University, 2019, 26(5): 1133–1145. DOI: https://doi.org/10.1007/s11771-019-4076-9.

    Article  Google Scholar 

  28. MA Yuan, MOHEBBI R, RASHIDI M M, YANG Zhi-gang, FANG Yu-hao. Baffle and geometry effects on nanofluid forced convection over forward-and backward-facing steps channel by means of lattice Boltzmann method [J]. Physica A: Statistical Mechanics and Its Applications, 2020, 554: 124696. DOI: https://doi.org/10.1016/j.physa.2020.124696.

    Article  Google Scholar 

  29. SELIMEFENDIGIL F, ÖZTOP H F. Hydro-thermal performance of CNT nanofluid in double backward facing step with rotating tube bundle under magnetic field [J]. International Journal of Mechanical Sciences, 2020, 185: 105876. DOI: https://doi.org/10.1016/j.ijmecsci.2020.105876.

    Article  Google Scholar 

  30. F SELIMEFENDIGIL, H F ÖZTOP. Numerical study of forced convection of nanofluid flow over a backward facing step with a corrugated bottom wall in the presence of different shaped obstacles [J]. Heat Transfer Engineering, 2016, 37(15): 1280–1292. DOI: https://doi.org/10.1080/01457632.2015.1119617.

    Article  Google Scholar 

  31. SELIMEFENDIGIL F, ÖZTOP H F. Laminar convective nanofluid flow over a backward-facing step with an elastic bottom wall [J]. Journal of Thermal Science and Engineering Applications, 2018, 10(4): 041003. DOI: https://doi.org/10.1115/1.4038738.

    Article  Google Scholar 

  32. SELIMEFENDIGIL F, ÖZTOP H F. Performance of TEG integrated channel with area expansion by using advanced passive techniques [J]. International Journal of Mechanical Sciences, 2021, 194: 106210. DOI: https://doi.org/10.1016/j.ijmecsci.2020.106210.

    Article  Google Scholar 

  33. CHAMKHA A, SELIMEFENDIGIL F. Forced convection of pulsating nanofluid flow over a backward facing step with various particle shapes [J]. Energies, 2018, 11(11): 3068. DOI: https://doi.org/10.3390/en11113068.

    Article  Google Scholar 

  34. AMNIYEH VATANPARAST M, HOSSAINPOUR S, KEYHANI-ASL A, FOROUZI S. Numerical investigation of total entropy generation in a rectangular channel with staggered semi-porous fins [J]. International Communications in Heat and Mass Transfer, 2020, 111: 104446. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2019.104446.

    Article  Google Scholar 

  35. SIAVASHI M, MIRI JOIBARY S M. Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(2): 1595–1610. DOI: https://doi.org/10.1007/s10973-018-7829-z.

    Article  Google Scholar 

  36. MIRI JOIBARY S M, SIAVASHI M. Effect of Reynolds asymmetry and use of porous media in the counterflow double-pipe heat exchanger for passive heat transfer enhancement [J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(3): 1079–1093. DOI: https://doi.org/10.1007/s10973-019-08991-2.

    Article  Google Scholar 

  37. SIAVASHI M, IRANMEHR S. Using sharp wedge-shaped porous media in front and wake regions of external nanofluid flow over a bundle of cylinders [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 29: 3730–3755. DOI: https://doi.org/10.1108/HFF-10-2018-0575.

    Article  Google Scholar 

  38. POURRAHMANI H, MOGHIMI M, SIAVASHI M, SHIRBANI M. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs [J]. Applied Thermal Engineering, 2019, 150: 433–444. DOI: https://doi.org/10.1016/j.applthermaleng.2019.01.010.

    Article  Google Scholar 

  39. ACAR B. Laminar forced convection of various nanofluids in sudden expansion channels under constant heat flux: A CFD study [J]. International Journal of Applied Mechanics, 2019, 11(5): 1950049. DOI: https://doi.org/10.1142/s1758825119500492.

    Article  MathSciNet  Google Scholar 

  40. PAVEL B I, MOHAMAD A A. An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media [J]. International Journal of Heat and Mass Transfer, 2004, 47(23): 4939–4952. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.014.

    Article  Google Scholar 

  41. PATANKAR S V. Numerical heat transfer and fluid flow[M]. Boca Raton: CRC Press, 2018. DOI: https://doi.org/10.1201/9781482234213.

    Book  Google Scholar 

  42. ELDRAINY Y A, SAQR K M, ALY H S, JAAFAR M N M. CFD insight of the flow dynamics in a novel swirler for gas turbine combustors [J]. International Communications in Heat and Mass Transfer, 2009, 36(9): 936–941. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2009.06.013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid-Reza Bahrami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahrami, HR. Numerical investigation of flow and heat transfer behind a two-dimensional backward-facing step equipped with a semi-porous baffle. J. Cent. South Univ. 28, 3354–3367 (2021). https://doi.org/10.1007/s11771-021-4860-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4860-1

Key words

关键词

Navigation