Skip to main content
Log in

Performance and mechanism of solid waste coking sulfur paste modified asphalt mixture before and after curing

固体废弃物焦化硫膏改性沥青混合料养护前后路用性能及机理

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

For the resource utilization of the solid waste coking sulfur paste and the improvement of performance of the asphalt mixture, a method for preparing modified asphalt mixture with coking sulfur paste modifier (CSPM) is herein proposed. Compared with the matrix asphalt mixture, the Marshall stability of the 30% CSPM modified asphalt mixture increased by 38.3%, the dynamic stability increased by nearly one time (reaching 1847.5 times/mm), the splitting strength ratio increased by 39.3% while the splitting tensile strength decreased by 11.7%. After curing, the performance of the CSPM modified asphalt mixture was further improved. The results show that CSPM improved the high temperature stability and water damage resistance of the asphalt mixture, and the low-temperature anti-cracking performance of that was slightly reduced. Chemical analysis of asphalt binders shows that a little sulfur reacted with asphalt to produce polysulfide compounds (R-Sx-R′), and a part of sulfur existed in the form of crystalline sulfur which was further increased after curing. The presence of crystalline sulfur as an inorganic filler is the key point for improving the high temperature stability and water resistance performance of modified asphalt mixture.

摘要

为了资源化利用焦炉煤气净化脱硫过程中产生的固体废弃物焦化硫膏,并提高沥青混合料的路用性能,提出了以焦化硫膏为原料制备焦化硫膏沥青改性剂(CSPM)的方法。 与基质沥青混合料相比,添加30%的CSPM 制备改性沥青混合料的马歇尔稳定度提高了38.3%,动稳定度提高了近1 倍(达到1847.5 次/mm),劈裂强度比提高了39.3%,劈裂抗拉强度降低了11.7%。 养护后,CSPM 改性沥青混合料性能较养护前得到进一步提高。 结果表明,添加30%的CSPM 提高了沥青混合料的高温稳定性和抗水损害性能,但其低温抗裂性能略有下降。 沥青胶结料的化学分析结果表明,少量的硫与沥青反应生成多硫化物(R-Sx-R′),部分硫以结晶硫的形式存在,并在养护后进一步增多。 结晶硫作为无机填料是提高改性沥青混合料高温稳定性和耐水性的关键。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HE Jian-ping, LI Hui. Coking chemical products recycling technology [M]. Beijing: Metallurgical Industry Press, 2006. (in Chinese)

    Google Scholar 

  2. LV Jian-hua, HE Xu, YU Kun, LI Xue. Simulation research on the coke-oven gas pressurized desulfurization process [J]. Advanced Materials Research, 2013, 6: 634–638. DOI: https://doi.org/10.4028/www.scientific.net/AMR.634-638.813.

    Google Scholar 

  3. CARNEIRO L D O, VASCONCELOS S F D, NETO G W D F, BRITO R P, BRITO K D. Improving H2S removal in the coke oven gas purification process [J]. Separation and Purification Technology, 2021, 275: 117862. DOI: https://doi.org/10.1016/j.seppur.2020.117862.

    Article  Google Scholar 

  4. LI Tao, LI Guo-qiang, ZHAO Yong-le, WANG Hong-yu, ZHANG Yong-fa. Resource treatment of coking sulfur paste: Characterization analysis and composition of impurities [J]. Environmental Progress & Sustainable Energy, 2019, 38(3): e13023. DOI: https://doi.org/10.1002/ep.13023.

    Article  Google Scholar 

  5. JIA Han-wei, WANG Yu-jue, LIU Guang-bing, HUANG Zhi-jun, FENG Xue-fen, JIN Xiao-da. Experimental study on purification of flue gas bio-desulfurization by decompression distillation [J]. Environmental Science and Technology, 2013, 26(4): 1–4. DOI: https://doi.org/10.1088/1742-5468/2013/10/P10008. (in Chinese)

    Google Scholar 

  6. CHEN Zheng, WU Shao-peng, ZHU Zu-huang, LIU Jie-sheng. Experimental evaluation on high temperature rheological properties of various fiber modified asphalt binders [J]. Journal of Central South University of Technology, 2008, 15(sl): 135–139. DOI: https://doi.org/10.1007/s11771-008-0332-0.

    Article  Google Scholar 

  7. BABAGOLI R, ZIARI H. Evaluation of rutting performance of stone matrix asphalt mixtures containing warm mix additives [J]. Journal of Central South University, 2017, 24: 360–373. DOI: CNKI:SUN:ZNGY.0.2017-02-015.

    Article  Google Scholar 

  8. ZHAO Meng-zhen, DONG Rui-kun. Reaction mechanism and rheological properties of waste cooking oil pre-desulfurized crumb tire rubber/SBS composite modified asphalt [J]. Construction and Building Materials, 2021, 274: 122083. DOI: https://doi.org/10.1016/j.conbuildmat.2020.122083.

    Article  Google Scholar 

  9. DAY A G. Improved Artificial Caoutchouc: US, 58,615 [P]. 1866.

  10. GAVRILOV M M, ZALOMLENKOV VA, GIDASPOV A A, MOISEEV I I. Technology of producing sulfur-asphalt binders for road construction [J]. Chemistry & Technology of Fuels & Oils, 2018, 53(6): 846–851. DOI: https://doi.org/10.1007/s10553-018-0871-5.

    Article  Google Scholar 

  11. WAGENFELD J G, AL-ALI K, ALMHEIRI S, SLAVENS A F, CALVET N. Sustainable applications utilizing sulfur, a byproduct from oil and gas industry: A state-of-the-art review [J]. Waste Management, 2019, 95: 78–89. DOI: https://doi.org/10.1016/j.wasman.2019.06.002.

    Article  Google Scholar 

  12. DAS A K, PANDA M. Investigation on rheological performance of sulphur modified bitumen (SMB) binders [J]. Constr Build Mater, 2017, 149(15): 724–732. DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.198.

    Article  Google Scholar 

  13. NGUYEN V H, LE V P. Performance evaluation of sulfur as alternative binder additive for asphalt mixtures [J]. Chinese Society of Pavement Engineering, 2019, 12: 380–387. DOI: https://doi.org/10.1007/s42947-019-0045-9.

    Google Scholar 

  14. PAPIRER E, FRITSCHY G. Modification of the surface properties of bitumen and asphaltenes following treatment with sulphur at 140°C [J]. Fuel, 1981, 60(8): 670–672. DOI: https://doi.org/10.1016/0016-2361(81)90216-7.

    Article  Google Scholar 

  15. PAPIRER E, FRITSCHY G. Structural modes of sulphur in sulphur-bitumen composites as studied by electron microscopy [J]. Fuel, 1980, 59(9): 617–620. DOI: https://doi.org/10.1016/0016-2361(80)90122-2.

    Article  Google Scholar 

  16. GAWEL I. Chapter 19. Sulphur-modified asphalts [M]// Developments in Petroleum Science. 2000: 515–535. DOI: https://doi.org/10.1016/S0376-7361(09)70290-0.

  17. XU Shi-fa, JIA Lu. Performance evaluation of sulphur modified asphalt mixture and its primary application technology [M]. Beijing: China Communications Press, 2015. (in Chinese)

    Google Scholar 

  18. LI Tao, LI Guo-qiang, ZHANG Jing, ZHANG Yong-fa. Purification process of by-product sulfur paste of ammonia wet desulfurization process: China, CN, 106006569 A [P]. 2016. (in Chinese)

  19. JTG F40–2004. Technical Specification for Construction of Highway Asphalt Pavements [S]. Ministry of Transport of the People’s Republic of China, China: Beijing, 2004.

    Google Scholar 

  20. LI Tao. Study on purification of coking sulfur paste and its modification mechanism to asphalt [D]. Taiyuan: Taiyuan University of Technology, 2019. (in Chinese)

    Google Scholar 

  21. JTG E20–2011. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering [S]. Beijing: Ministry of Transport of the People’s Republic of China, 2011. (in Chinese)

    Google Scholar 

  22. NCIRI N, CHO N. A thorough study on the molecular weight distribution in natural asphalts by gel permeation chromatography (GPC): The case of trinidad lake asphalt and asphalt ridge bitumen [J]. Materials Today: Proceedings, 2018, 5(11): 23656–23663. DOI: https://doi.org/10.1016/j.matpr.2018.10.155.

    Google Scholar 

  23. ZHANG Meng-ya, HAO Pei-wei, DONG Shi, LI Yan, YUAN Gao-ang. Asphalt binder micro-characterization and testing approaches: A review [J]. Measurement, 2019, 151: 107255. DOI: https://doi.org/10.1016/j.measurement.2019.107255.

    Article  Google Scholar 

  24. LESUEUR D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification [J]. Advances in Colloid & Interface Science, 2009, 145(1, 2): 42–82. DOI: https://doi.org/10.1016/j.cis.2008.08.011.

    Article  Google Scholar 

  25. WANG Jia-yu, WANG Tao, HOU Xiang-dao, XIAO Fei-peng. Modelling of rheological and chemical properties of asphalt binder considering SARA fraction [J]. Fuel, 2019, 238: 320–330. DOI: https://doi.org/10.1016/j.fuel.2018.10.126.

    Article  Google Scholar 

  26. LIU Sheng-jie, PENG Ai-long, WU Jian-tao, ZHOU Sheng-bo. Waste engine oil influences on chemical and rheological properties of different asphalt binders [J]. Construction and Building Materials, 2018, 191: 1210–1220. DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.126.

    Article  Google Scholar 

  27. D’MELO D, RAJU S, BHATTACHARYA S, SUBRAMANI S. Self-assembly of amorphous sulphur in bitumen-sulphur mixtures and its impact on properties [J]. Construction and Building Materials, 2016, 126: 976–982. DOI: https://doi.org/10.1016/j.conbuildmat.2016.09.114.

    Article  Google Scholar 

  28. ZHANG Hai-tao, WANG Ying, YU Teng-jiang, LIU Zuo-qiang. Microstructural characteristics of differently aged asphalt samples based on atomic force microscopy (AFM) [J]. Construction and Building Materials, 2020, 255: 119388. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119388.

    Article  Google Scholar 

  29. WANG Rong-jie, SHEN Ben-xian, MA Jian, ZHAO Ji-Gang. Ring-open reaction mechanism of sulfur S_8 based on density functional theory [J]. CIESC Journal, 2015, 66(10): 3919–3924. DOI: https://doi.org/10.11949/j.issn.0438-1157.20150274. (in Chinese)

    Google Scholar 

  30. LOEBER L, MULLER G, MOREL J. Bitumen in colloid science: A chemical, structural and rheological approach [J]. Fuel, 1998, 77(13): 1443–1450. DOI: https://doi.org/10.1016/S0016-2361(98)00054-4.

    Article  Google Scholar 

  31. SOUAYA E R, ELKHOLY S A, ABD EL-RAHMAN A M M, EI-SHAFIE M, IBRAHIM I M, ABO-SHANAB Z L. Partial substitution of asphalt pavement with modified sulfur [J]. Egyptian Journal of Petroleum, 2015, 24(4): 483–491. DOI: https://doi.org/10.1016/j.ejpe.2015.06.003.

    Article  Google Scholar 

Download references

Funding

Project(201703D321006) supported by the Shanxi Provincial Key Research and Development Project (Social Development), China

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by ZHAO Yong-le, LI Guo-qiang, and ZHANG Yong-fa. ZHAO Yong-le and LI Tao provided the measured asphalt mixture performance data, and analyzed the measured data. ZHAO Yong-le, WANG Hong-yu and ZHANG Shu-ting provided the characterization analysis of asphalt binders and proposed the mechanism of modification. The initial draft of the manuscript was written by ZHAO Yong-le, LI Guo-qiang, LI Tao, and ZHANG Yong-fa. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Guo-qiang Li  (李国强).

Additional information

Conflict of interest

ZHAO Yong-le, LI Guo-qiang, LI Tao, WANG Hong-yu, ZHANG Shu-ting, and ZHANG Yong-fa declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Yl., Li, Gq., Li, T. et al. Performance and mechanism of solid waste coking sulfur paste modified asphalt mixture before and after curing. J. Cent. South Univ. 28, 2179–2192 (2021). https://doi.org/10.1007/s11771-021-4761-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4761-3

Key words

关键词

Navigation