Skip to main content
Log in

Prediction of structural and electronic properties of Cl2 adsorbed on TiO2(100) surface with C or CO in fluidized chlorination process: A first-principles study

沸腾氯化过程中 C 和 CO 分别与 Cl2 在 TiO2(100)表面的吸附结构及电荷属性分析: 第一性原理研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Based on the first-principles calculations of density functional theory, co-adsorption models of C or CO with Cl2 on rutile TiO2 (100) surface were established. The adsorption structures and electronic properties during chlorination process were predicted. Then, the adsorption energy, charge density, electron density difference and density of state of the adsorption structures were calculated and analyzed. The stabilities of the adsorption structures and the charge distributions between atoms were studied. It was found that both C and CO could promote the adsorption reactions of Cl2 on TiO2 (100) surface, and C was more favorable to the adsorption process. The results show that the adsorption process of Cl2 on TiO2(100) surface was physisorption, and the co-adsorption processes of C or CO with Cl2 on TiO2(100) surface were chemisorptions.

摘要

基于密度泛函理论的第一性原理计算方法, 构建 C 和 CO 分别与 Cl2 在金红石 TiO2 (100)面共吸附模型, 预测了氯化过程中的吸附结构及其电荷属性。 之后, 对吸附结构的吸附能、 电荷密度、 差分电荷密度和态密度等进行计算分析, 研究了吸附结构的稳定性及原子间的电荷分布。 发现 C 和 CO 均能促使 Cl2 在 TiO2(100)表面发生吸附反应, 且 C 更有利于促进吸附反应的发生。 结果表明: Cl2 分子单独在 TiO2(100)表面吸附的过程为物理吸附, C 和 CO 分别与 Cl2 同时在 TiO2(100)表面吸附的过程均为化学吸附。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DAI Wen-wu, ZHAO Zong-yan. Structural and electronic properties of low-index stoichiometric BiOI surfaces [J]. Materials Chemistry and Physics, 2017, 193: 164–176. DOI: https://doi.org/10.1016/j.matchemphys.2017.02.017.

    Article  Google Scholar 

  2. ULRIKE D. The surface science of titanium dioxide [J]. Surface Science Reports, 2003, 48: 53–229. DOI: https://doi.org/10.1016/S0167-5729(02)00100-0.

    Article  Google Scholar 

  3. WANG Yu-ming, LIU Rui-feng, ZHOU Rong-hui, SHAO Bao-shun, WEI Qing-song, YUAN Zhang-fu, XU Chong. Thermodynamics on the reaction of carbochlorination of titania for getting titanium tetrachloride [J]. Computers and Applied Chemistry, 2006, 23: 263–266. DOI: https://doi.org/10.1016/S1003-6326(06)60040-X.

    Google Scholar 

  4. ADIPURI A, ZHANG Guang-qing, OSTROVSKI O. Chlorination of titanium oxycarbide produced by carbothermal reduction of rutile [J]. Metallurgical and Materials Transactions B, 2008, 39: 23–34. DOI: https://doi.org/10.1007/s11663-007-9117-3.

    Article  Google Scholar 

  5. SHON H, VIGNESWARAN S, KIM I, CHO J, KIM J. Preparation of titanium dioxide (TiO2) from sludge produced by titanium tetrachloride (TiCl4) flocculation of wastewater [J]. Environmental Science and Technology, 2007, 41: 1372–1377. DOI: https://doi.org/10.1021/es062062g.

    Article  Google Scholar 

  6. EL-SADEK M H, FOUAD O A, MORSI M B, EL-BARAWY K. Controlling conditions of fluidized bed chlorination of upgraded titania slag [J]. Transactions of the Indian Institute of Metals, 2019, 72: 423–427, 2018. DOI: https://doi.org/10.1007/s12666-018-1493-7.

    Article  Google Scholar 

  7. XIONG Shao-feng, YUAN Zhang-fu, XU Cong, XI Liang. Composition of off-gas produced by combined fluidized bed chlorination for preparation of TiCLi [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(1): 128–134. DOI: https://doi.org/10.1016/S1003-6326(09)60109-6.

    Article  Google Scholar 

  8. ZHONG Hong, ER De-quan, WEN Liang-ying. Theoretical study on influence of CaO and MgO on the reduction of FeO by CO [J]. Appllied Surface Science, 2017, 399: 630–637. DOI: https://doi.org/10.1016/j.apsusc.2016.12.123.

    Article  Google Scholar 

  9. ZHONG Hong, WEN Liang-ying, LI Jian-long, XU Jian, HU Mei-long, YANG Zhong-qing. The adsorption behaviors of CO and H2 on FeO surface: A density functional theory study [J]. Powder Technology, 2016, 303: 100–108. DOI: https://doi.org/10.1016/j.powtec.2016.09.017.

    Article  Google Scholar 

  10. ZHONG Hong, WEN Liang-ying, ZOU Cong, ZHANG Sheng-fu, BAI Chen-guang. Density functional theory study on the carbon-adhering reaction on Fe3O4(111) surface [J]. Metallurgical and Materials Transactions B, 2015, 46: 2288–2295. DOI: https://doi.org/10.1007/s11663-015-0379-x.

    Article  Google Scholar 

  11. INDERWILDI O, KRAFT M. Adsorption, diffusion and desorption of chlorine on and from rutile TiO2(110): A theoretical investigation [J]. Chemphyschem, 2007, 8: 444–451. DOI: https://doi.org/10.1002/cphc.200600653.

    Article  Google Scholar 

  12. HEBENSTREIT E, HEBENSTREIT W, GEISLER H, VENTRICE C, HITE D, SPRUNGER P, DIEBOLD U. The adsorption of chlorine on TiO2(110) studied with scanning tunneling microscopy and photoemission spectroscopy [J]. Surface Science, 2002, 505: 336–348. DOI: https://doi.org/10.1016/S0039-6028(02)01385-7.

    Article  Google Scholar 

  13. HIEHATA K, SASAHARA A, ONISHI H. Kelvin probe force microscope observation of chlorine-adsorbed TiO2(110) surfaces [J]. Japanese Journal of Applied Physics, 2008, 47: 6149–6152. DOI: https://doi.org/10.1143/JJAP.47.6149.

    Article  Google Scholar 

  14. BATZILL M, HEBENSTREIT E, HEBENSTREIT W, DIEBOLD U. Influence of subsurface, charged impurities on the adsorption of chlorine at TiO2(110) [J]. Chemical Physics Letters, 2003, 367: 319–323. DOI: https://doi.org/10.1016/S0009-2614(02)01635-4.

    Article  Google Scholar 

  15. RAMAMOORTHY M, VANDERBILT D. First-principles calculations of the energetics of stoichiometric TiO2 surfaces [J]. Physical Review B, 1994, 23(49): 722–727. DOI: https://doi.org/10.1103/PhysRevB.49.16721.

    Google Scholar 

  16. INDERWILDI O, KRAFT M. Adsorption, diffusion and desorption of chlorine on and from rutile TiO2{110}: A theoretical investigation [J]. ChemPhysChem, 2007, 8: 444–451. DOI: https://doi.org/10.1002/cphc.200600653.

    Article  Google Scholar 

  17. HEINE A, ISABELA C, STUDT F, ABILD F, BLIGARD T, ROSSMESIL J. Electrochemical chlorine evolution at rutile oxide (110) surfaces [J]. Physical Chemistry Chemical Physics, 2010, 12: 283–290. DOI: https://doi.org/10.1039/b917459a.

    Article  Google Scholar 

  18. SEZGIN A, MEHMET. Stability and superconductivity properties of metal substituted aluminum diborides (M0.5Al0.5B2) [J]. Computational Materials Science, 2018, 154: 234–242. DOI: https://doi.org/10.1016/j.commatsci.2018.08.005.

    Article  Google Scholar 

  19. TUTUIANU M, INDERWILDI O R, BESSLER W G, WARNATZ J. Competitive adsorption of NO, NO2, CO2 and H2O on BaO(100): A quantum chemical study [J]. Journal of Physical Chemistry B, 2006, 110: 17484–17492. DOI: https://doi.org/10.1021/jp055268x.

    Article  Google Scholar 

  20. MA C G, KRASNENKO V, BRIK M G. First-principles calculations of different (001) surface terminations of three cubic perovskites CsCaBr3, CsGeBr3, and CsSnBr3 [J]. Journal of Physics and Chemistry of Solids, 2018, 115: 289–299. DOI: https://doi.org/10.1016/j.jpcs.2017.12.052.

    Article  Google Scholar 

  21. CHEN Hao, LI Xue-chao, WAN Run-dong, KAO WS, LEI Ying. A DFT study of the electronic structures and optical properties of (Cr, C) co-doped rutile TiO2 [J]. Chemical Physics, 2018, 501: 60–67. DOI: https://doi.org/10.1016/j.chemphys.2017.11.021.

    Article  Google Scholar 

  22. JIANG Zhao, GUO Shu-yi, FANG Tao. Theoretical investigation on the dehydrogenation mechanism of CH3OH on Cu(100) surface [J]. Journal of Alloys and Compounds, 2017, 698: 617–625. DOI: https://doi.org/10.1016/j.jallcom.2016.12.220.

    Article  Google Scholar 

  23. PAYNE M C, TETER M P, ALLAN D C, ARIAS T A, JOANNOPOULOS J D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64: 1045–1097. DOI: https://doi.org/10.1103/RevModPhys.64.1045.

    Article  Google Scholar 

  24. BERGERMAYER W, SCHWEIGER H, WIMMER E. Ab initio thermodynamics of oxide surfaces: O2 on Fe2O3(0001) [J]. Physical Review B, 2004, 69: 1324–1332. DOI: https://doi.org/10.1103/PhysRevB.69.195409.

    Article  Google Scholar 

  25. DAI Yue-hua, GONG Shan-shan, ZHONG Zhi-sheng, GAO Feng-yu, WANG Fei-fei, DING Chen, YANG Jin, YANG Fei. Effect of graphene/TiO2 (001) interface on threshold voltage and nonlinearity [J]. Nano, 2018, 13: 23069–4. DOI: https://doi.org/10.1142/S1793292018300049.

    Article  Google Scholar 

  26. CHEN Hao, LI Xue-chao, WAN Run-dong. Theoretical studies on the electronic structure and optical absorption property of (Ni, C) co-doped anatase TiO2 [J]. Computational Condensed Matter, 2017, 13: 16–28. DOI: https://doi.org/10.1016/j.cocom.2017.08.005.

    Article  Google Scholar 

  27. FAN Ya-ming, WENG Qi-yu, ZHUO Yu-qun, DONG Song-tao, HU Peng-bo, LI Duan-le. Theoretical study of As2O3 adsorption mechanisms on CaO surface [J]. Materials, 2019, 12: 677–690. DOI:https://doi.org/10.3390/ma12040677.

    Article  Google Scholar 

  28. LIU Shuai, TANG Cheng-huang, ZHAN Yong-zhong. Theoretical prediction of transition metal alloying effects on the lightweight TiAl intermetallic [J]. Metallurgical and Materials Transactions A, 2016, 33: 1451–1460. DOI:https://doi.org/10.1007/s11661-015-3321-6.

    Article  Google Scholar 

  29. JIN Shang-xiao, LIU Na, ZHANG Shuai, LI De-jun. The simulation of interface structure, energy and electronic properties of TaN/ReB2 multilayers using first-principles [J]. Surface and Coatings Technology, 2017, 326: 417–423. DOI: https://doi.org/10.1016/j.surfcoat.2016.11.068.

    Article  Google Scholar 

  30. PERRON H, DOMAIN C, ROQUES J, DROT R, SIMONI E, CATALETTE H. Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations [J]. Theoretical Chemistry Accounts: Theory, Computation, and Modeling, 2007, 117: 565–574. DOI: https://doi.org/10.1007/s00214-006-0189-y.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by YANG Fan and WEN Liang-ying. PENG Qin and ZHAO Yan sorted out relevant data in the early stage. The initial draft of the manuscript was written by YANG Fan. WEN Liang-ying, XU Jian, HUMei-long, ZHANG Sheng-fu, and YANG Zhong-qing supervised the process. YANG Fan and WEN Liang-ying replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Liang-ying Wen  (温良英).

Additional information

Conflict of interest

All authors declare that they have no conflict of interest.

Foundation item

Projects(51674052, 51974046) supported by the National Natural Science Foundation of China; Project(cstc2018jcyjAX0003) supported by the Chongqing Research Program of Basic Research and Frontier Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Wen, Ly., Peng, Q. et al. Prediction of structural and electronic properties of Cl2 adsorbed on TiO2(100) surface with C or CO in fluidized chlorination process: A first-principles study. J. Cent. South Univ. 28, 29–38 (2021). https://doi.org/10.1007/s11771-021-4583-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4583-3

Key words

关键词

Navigation