Skip to main content
Log in

Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this paper, geometric bulk parameters, bulk moduli, energy gaps and relative stabilities of the TiO2 anatase and rutile phases were determined from periodic DFT calculations. Then, for the rutile phase, structures, relaxations and surface energies of the (110), (100), (101) and (001) faces were computed. The calculated surface energies are consistent with the natural rutile powder composition, even if a dependence on the number of layers of the slab used to model the surface was identified. Internal constraints, consisting in freezing some internal layers of the slab to atomic bulk positions, were thus added to mimic the bulk hardness in order to stabilise the computed surface energies for thinner systems. In parallel, the influence of pseudopotentials was studied and it appears that four valence electrons for titanium atoms are sufficient. The aim of this study was to optimise accurate rutile TiO2 surface models that will be used in further calculations to investigate water and uranyl ion sorption mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindsay R, Wander A, Ernst A, Montanari B, Thornton G, Harrison NM (2005). Phys Rev Lett 94:246102

    Article  CAS  Google Scholar 

  2. Charlton G, Howes PB, Nicklin CL, Steadman P, Taylor JSG, Muryn CA, Harte SP, Mercer J, McGrath R, Norman D, Turner TS, Thornton G (1997). Phys Rev Lett 78:495

    Article  CAS  Google Scholar 

  3. Czyzewski JJ, Krajniak J, Klein S (2004). App Surf Sci 227:144

    Article  CAS  Google Scholar 

  4. Diebold U, Lehman J, Mahmoud T, Kuhn M, Leonardelli G, Hebenstreit W, Schmidt M, Varga P (1998). Surf Sci 411:137

    Article  CAS  Google Scholar 

  5. Fischer S, Munz AW, Schierbaum KD, Göpel W (1995). Surf Sci 337:17

    Article  CAS  Google Scholar 

  6. Murray PW, Condon NG, Thornton G (1995). Phys Rev B 51:10989

    Article  CAS  Google Scholar 

  7. Novak D, Garfunkel E, Gustafsson T (1994). Phys Rev B 50:5000

    Article  CAS  Google Scholar 

  8. Zhang Z, Fenter P, Cheng L, Sturchio NC, Bedzyk MJ, Machesky ML, Anovitz LM, Wesolowski DJ (2006). J Coll Int Sci 295:50

    Article  CAS  Google Scholar 

  9. Agnoli S, Sambi M, Granozzi G, Castellarin-Cudia C, Surnev S, Ramsey MG, Netzer FP (2004). Surf Sci 562:150

    Article  CAS  Google Scholar 

  10. Tanner RE, Goldfarb I, Castell MR, Briggs GAD (2001). Surf Sci 486:167

    Article  CAS  Google Scholar 

  11. Towle SN, Brown Jr GE, Parks GA (1999). J Coll Int Sci 217:299

    Article  CAS  Google Scholar 

  12. Ridley MK, Machesky ML, Wesolowski DJ, Palmer DA (1999). Geochim Cosmochim Acta 63:3087

    Article  CAS  Google Scholar 

  13. O’Day PA, Chisholm-Brause CJ, Towle SN, Parks GA, Brown Jr GE (1996). Geochim Cosmochim Acta 60:2515

    Article  CAS  Google Scholar 

  14. Onda K, Li B, Zhao J, Petek H (2005). Surf Sci 593:32

    Article  CAS  Google Scholar 

  15. Olsson M, Jakobsson AM, Albinsson Y (2003). J Coll Int Sci 266:269

    Article  CAS  Google Scholar 

  16. Den Auwer C, Drot R, Simoni E, Conradson SD, Gailhanou M, Mustre de Leon J (2003). New J Chem 27:648

    Article  CAS  Google Scholar 

  17. Rodriguez JA, Hrbek J, Chang Z, Dvorak J, Jirsak T (2002). Phys Rev B 65:235414

    Article  CAS  Google Scholar 

  18. Robert D, Parra S, Pulgarin C, Krzton A, Weber JV (2000). Appl Surf Sci 167:51

    Article  CAS  Google Scholar 

  19. Henderson MA (1998). Surf Sci 400:203

    Article  CAS  Google Scholar 

  20. Shultz AN, Hetherington III WM, Baer DR, Wang LQ, Engelhard MH (1997). Surf Sci 392:1

    Article  CAS  Google Scholar 

  21. Hadjiivanov K (1988). Appl Surf Sci 135:331

    Article  Google Scholar 

  22. Diebold U (2003). Surf Sci Rep 48:53

    Article  CAS  Google Scholar 

  23. Muscat J, Swamy V, Harrison NM (2002). Phys Rev B 65:224112

    Article  CAS  Google Scholar 

  24. Ramamoorthy M, Vanderbilt D, King-Smith RD (1994). Phys Rev B 49:16721

    Article  CAS  Google Scholar 

  25. Jug K, Nair NN, Bredow T (2005). Surf Sci 590:9

    Article  CAS  Google Scholar 

  26. Bandura AV, Sykes DG, Shapovalov V, Troung TN, Kubicki JD, Evarestov RA (2004). J Phys Chem B 108:7844

    Article  CAS  Google Scholar 

  27. Zhang C, Lindan PJD (2003). Chem Phys Lett 373:15

    Article  CAS  Google Scholar 

  28. Langel W, Menken L (2003). Surf Sci 538:1

    Article  CAS  Google Scholar 

  29. Odelius M, Persson P, Lunell S (2003). Surf Sci 529:47

    Article  CAS  Google Scholar 

  30. Předota M, Zhang Z, Fenter P, Wesolowski DJ, Cummings PT (2004). J Phys Chem B 108:12061

    Article  CAS  Google Scholar 

  31. Svetina M, Colombi Ciacchi L, Sbaizero O, Meriani S, De Vita A (2001). Acta Mater 49:2169

    Article  CAS  Google Scholar 

  32. Muscat J, Harrison NM, Thornton G (1999). Phys Rev B 59:15457

    Article  CAS  Google Scholar 

  33. Wang Y, Hwang GS (2003). Surf Sci 542:72

    Article  CAS  Google Scholar 

  34. Lopez N, Nørskov JK (2002). Surf Sci 515:175

    Article  CAS  Google Scholar 

  35. Giordano L, Pacchioni G, Bredow T, Sanz JF (2001). Surf Sci 471:21

    Article  CAS  Google Scholar 

  36. Menetrey M, Markovits A, Minot C (2003). Surf Sci 524:49

    Article  CAS  Google Scholar 

  37. Ahdjoudj J, Markovits A, Minot C (1999). Catal Today 50:541

    Article  CAS  Google Scholar 

  38. Barnard AS, Zapol P, Curtiss LA (2005). J Chem Theory Comput 1:107

    Article  CAS  Google Scholar 

  39. Wang LQ, Baer DR, Engelhard MH, Shultz AN (1995). Surf Sci 344:237

    Article  CAS  Google Scholar 

  40. Brookes IM, Muryn CA, Thornton G (2001). Phys Rev Lett 87:266103

    Article  CAS  Google Scholar 

  41. Schaub R, Thostrup P, Lopez N, Lægsgaard E, Stensgaard I, Nørskov JK, Besenbacher JF (2001). Phys Rev Lett 87:266104

    Article  CAS  Google Scholar 

  42. Kresse G, Hafner J (1993). Phys Rev B 47:R558

    Article  Google Scholar 

  43. Kresse G, Hafner J (1994). Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  44. Kresse G, Furthmüller J (1996). Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  45. Kresse G, Furthmüller J (1996). Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  46. Perdew JP, Wang Y (1992). Phys Rev B 45:13244

    Article  Google Scholar 

  47. Vanderbilt D (1985). Phys Rev B 32:8412

    Article  CAS  Google Scholar 

  48. Vanderbilt D (1990). Phys Rev B 41:R7892

    Article  Google Scholar 

  49. Blöch PE (1994). Phys Rev B 50:17953

    Article  Google Scholar 

  50. Kresse G, Joubert D (1999). Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  51. Monkhorst HJ, Pack JD (1976). Phys Rev B 13:5188

    Article  Google Scholar 

  52. Blöchl PE, Jepsen O, Andersen OK (1994). Phys Rev B 49:16223

    Article  Google Scholar 

  53. Gerward L, Olsen JS (1997). J Appl Crystallogr 30:259

    Article  CAS  Google Scholar 

  54. Ming LC, Manghani MH (1979). J Geophys Res 84:4777

    Article  CAS  Google Scholar 

  55. Arlt T, Bermejo M, Blanco MA, Gerward L, Jiang JZ, Olsen JS, Recio JM (2000). Phys Rev B 61:14414

    Article  CAS  Google Scholar 

  56. Swamy V, Gale JD, Dubrovinsky LS (2001). J Phys Chem Solids 62:887

    Article  CAS  Google Scholar 

  57. Fahmi A, Minot C, Silvi B, Causá M (1993). Phys Rev B 47:11717

    Article  CAS  Google Scholar 

  58. Causá M, Zupan A (1994). Chem Phys Lett 220:145

    Article  Google Scholar 

  59. Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ (1996). J Am Chem Soc 118:6716

    Article  CAS  Google Scholar 

  60. Jones P, Hockey JA (1971). Trans Faraday Soc 67:2669

    Article  CAS  Google Scholar 

  61. Jones P, Hockey JA (1971). Trans Faraday Soc 67:2679

    Article  CAS  Google Scholar 

  62. Bates SP, Kresse G, Gillan MJ (1997). Surf Sci 385:386

    Article  CAS  Google Scholar 

  63. Bredow T, Giordano L, Cinquini F, Pacchioni G (2004). Phys Rev B 70:035419

    Article  CAS  Google Scholar 

  64. Bandura AV, Kubicki JD (2003). J Phys Chem B 107:11072

    Article  CAS  Google Scholar 

  65. Lindan PJD, Harrison NM, Gillan MJ, White JA (1997). Phys Rev B 55:15919

    Article  CAS  Google Scholar 

  66. Goniakowski J, Gillan MJ (1996). Surf Sci 350:145

    Article  CAS  Google Scholar 

  67. Lazzeri M, Vittadini A, Selloni A (2001). Phys Rev B 63:155409

    Article  CAS  Google Scholar 

  68. Albaret T, Finocchi F, Noguera C, De Vita A (2001). Phys Rev B 65:035402

    Article  CAS  Google Scholar 

  69. Lindan PJD, Harrison NM, Holender JM, Gillan MJ, Payne MC (1996). Surf Sci 364:431

    Article  CAS  Google Scholar 

  70. Muscat J, Harrison NM, Thornton G (1999). Phys Rev B 59:2320

    Article  CAS  Google Scholar 

  71. Tero R, Fukui KI, Iwasawa Y (2003). J Phys Chem B 107:3207

    Article  CAS  Google Scholar 

  72. Munnix S, Schmeits M (1984). Phys Rev B 30:2202

    Article  CAS  Google Scholar 

  73. Mackrodt WC, Simson EA, Harrison NM (1997). Surf Sci 384:192

    Article  CAS  Google Scholar 

  74. Muscat J, Harrison NM (2000). Surf Sci 446:119

    Article  CAS  Google Scholar 

  75. Thompson SJ, Lewis SP (2006). Phys Rev B 73:073403

    Article  CAS  Google Scholar 

  76. Hameeuw KJ, Cantele G, Ninno D, Trani F, Iadonisi G (2006). J Chem Phys 124:024708

    Article  CAS  Google Scholar 

  77. Perron H, Vandenborre J, Domain C, Roques J, Drot R, Simoni E, Catalette H (2006). Surf Sci DOI 10.1016/j.susc. 2006.10.015

  78. Perron H, Domain C, Roques J, Drot R, Simoni E, Catalette H (2006). Inorg Chem Commun 45:6568

    CAS  Google Scholar 

  79. Dossot M, Cremel S, Vandenborre J, Grausem J, Humbert B, Drot R, Simoni E (2006). Langmuir 22:140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Roques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perron, H., Domain, C., Roques, J. et al. Optimisation of accurate rutile TiO2 (110), (100), (101) and (001) surface models from periodic DFT calculations. Theor Chem Acc 117, 565–574 (2007). https://doi.org/10.1007/s00214-006-0189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0189-y

Keywords

Navigation