Skip to main content
Log in

Microstructural insight into permeability and water retention property of compacted binary silty clay

基于微观结构的压实二元粉质黏土渗透与持水特性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The durability of silty clay embankments is partially controlled by the moisture migration, which depends on soil hydraulic properties. This paper presents an experimental study of hydraulic properties of compacted binary silty clay. Specimens with different mixing ratios and dry densities were prepared. Scanning electron microscopy and mercury intrusion porosimetry were used to characterise the microstructure of silty clay. Thereafter, falling-head permeability tests and water retention tests were conducted to study the permeability and water retention property, respectively. The results demonstrate that clay particles are dispersed and show preferred arrangements after compaction when the clay content is 100%. As the clay content decreases, the arrangement of clay particles is gradually disturbed because of the existence of silt particles, causing the formation of large pores around silt particles. When the dry density increases, the pores around silt particles significantly decrease. Moreover, the permeability of silty clay decreases but the water retention capacity increases with increasing clay content and dry density. This is because the silty clay with larger clay content and dry density has fewer large pores, which greatly restrains the flow of water. Both the permeability and water retention property of silty clay can be predicted from pore size distribution parameters.

摘要

粉质黏土路堤的耐久性在一定程度上受水分迁移控制,而后者取决于土的水力特性。本文研究 了压实二元粉质黏土的水力特性。首先,按不同混合比和干密度制备了的二元粉质黏土试样,并利用 扫描电镜和压汞仪分析了粉质黏土的微观结构。然后,通过变水头渗透试验和持水性试验,研究了粉 质黏土的渗透性和持水性。结果表明,当黏土含量为100%时,压实后黏土颗粒分散性良好,并呈现 定向排列特征。随着黏土含量降低,黏土颗粒的定向排列逐渐受到粉粒存在的干扰,导致粉粒周围形 成许多大孔隙。但粉粒周围孔隙的数量随着干密度的增加明显减小。并且,随着黏土含量和干密度的 增加,粉质黏土的渗透性降低而持水性增强。黏土含量和干密度越大,粉质黏土中的孔隙越少,对水 体流动的阻碍越强。粉质黏土的渗透与持水特性均可通过孔径分布特征参数进行预测。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YE Y. Marine geo-hazards in China [M]. Rotterdam, Netherlands: Elsevier Science, 2017.

    Google Scholar 

  2. ZHANG C, JIANG G, LIU X, WANG Z. Lateral displacement of silty clay under cement-fly ash-gravel pile-supported embankments: Analytical consideration and field evidence [J]. Journal of Central South University, 2015, 22(4): 1477–1489. DOI: https://doi.org/10.1007/s11771-015-2665-9.

    Article  Google Scholar 

  3. XU X, WANG B, FAN C, ZHANG W. Strength and deformation characteristics of silty clay under frozen and unfrozen states [J]. Cold Regions Science and Technology, 2020, 172: 102982. DOI: https://doi.org/10.1016/j.coldregions.2019.102982.

    Article  Google Scholar 

  4. ZHANG J, PENG J, ZENG L, LI J, LI F. Rapid estimation of resilient modulus of subgrade soils using performance-related soil properties [J]. International Journal of Pavement Engineering, 2020. DOI: https://doi.org/10.1080/10298436.2019.1643022.

  5. SAKAI A, SAMANG L, MIURA N. Partially-drained cyclic behavior and its application to the settlement of a low embankment road on silty-clay [J]. Soils and Foundations, 2003, 43(1): 33–46. DOI: https://doi.org/10.3208/sandf.43.33.

    Article  Google Scholar 

  6. ZHANG Jun-hui, LI Feng, ZENG Ling, PENG Jun-hui, LI Jue. Numerical simulation of the moisture migration of unsaturated clay embankments in southern China considering stress state [J]. Bulletin of Engineering Geology and the Environment, 2020. DOI: https://doi.org/10.1007/s10064-020-01916-6.

  7. CHENG Y, HUANG X, LI C, LI L. Soil-atmosphere interaction as triggering factors of openings between embankment and pavement [J]. KSCE Journal of Civil Engineering, 2018, 22(5): 1642–1650. DOI: https://doi.org/10.1007/s12205-017-0679-6.

    Article  Google Scholar 

  8. ZHANG J, PENG J, LIU W, LU W. Predicting resilient modulus of fine-grained subgrade soils considering relative compaction and matric suction [J]. Road Materials and Pavement, 2020. DOI: https://doi.org/10.1080/14680629.2019.1651756.

  9. ZHANG J, DING L, LI F, PENG J. Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China [J]. Journal of Cleaner Production, 2020, 255: 120223. DOI: https://doi.org/10.1016/j.jclepro.2020.120223.

    Article  Google Scholar 

  10. ZENG Ling, YAO Xiao-fei, ZHANG Jun-hui, GAO Qian-feng, CHEN Jing-cheng, GUI Yu-tong. Ponded infiltration and spatial-temporal prediction of the water content of silty mudstone [J]. Bulletin of Engineering Geology and the Environment, 2020: 1–13. DOI: https://doi.org/10.1007/s10064-020-01880-1.

  11. DONG H, HUANG R, GAO Q F. Rainfall infiltration performance and its relation to mesoscopic structural properties of a gravelly soil slope [J]. Engineering Geology, 2017, 230: 1–10. DOI: https://doi.org/10.1016/j.enggeo.2017.09.005.

    Article  Google Scholar 

  12. FREDLUND D G. State of practice for use of the soil-water characteristic curve (SWCC) in geotechnical engineering [J]. Canadian Geotechnical Journal, 2019, 56(8): 1059–1069. DOI: https://doi.org/10.1139/cgj-2018-0434.

    Article  Google Scholar 

  13. KIM W S, BORDEN R H. Influence of soil type and stress state on predicting shear strength of unsaturated soils using the soil-water characteristic curve [J]. Canadian Geotechnical Journal, 2011, 48(12): 1886–1900. DOI: https://doi.org/10.1139/t11-082.

    Article  Google Scholar 

  14. DIEUDONNE A C, DELLA VECCHIA G, CHARLIER R. Water retention model for compacted bentonites [J]. Canadian Geotechnical Journal, 2017, 54(7): 915–925. DOI: https://doi.org/10.1139/cgj-2016-0297.

    Article  Google Scholar 

  15. GAO Q F, DONG H, HUANG R, LI Z F. Structural characteristics and hydraulic conductivity of an eluvial-colluvial gravelly soil [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(7): 5011–5028. DOI: https://doi.org/10.1007/s10064-018-01455-1.

    Article  Google Scholar 

  16. GAO Q F, ZHAO D, ZENG L, DONG H. A pore size distribution-based microscopic model for evaluating the permeability of clay [J]. KSCE Journal of Civil Engineering, 2019, 23(12): 5002–5011. DOI: https://doi.org/10.1007/s12205-019-2219-z.

    Article  Google Scholar 

  17. REN J, SHEN Z Z, YANG J, ZHAO J, YIN J. Effects of temperature and dry density on hydraulic conductivity of silty clay under infiltration of low-temperature water [J]. Arabian Journal for Science and Engineering, 2014, 39(1): 461–466. DOI: https://doi.org/10.1007/s13369-013-0849-x.

    Article  Google Scholar 

  18. AL-DAKHEELI H, BULUT R. Interrelationship between elastic deformation and soil-water characteristic curve of expansive soils [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(4): 04019005. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002020.

    Article  Google Scholar 

  19. SUN Y, TANG L. Use of X-ray computed tomography to study structures and particle contacts of granite residual soil [J]. Journal of Central South University, 2019, 26(4): 938–954. DOI: https://doi.org/10.1007/s11771-019-4062-2.

    Article  Google Scholar 

  20. ZENG L, YAO X, GAO Q F, BIAN H. Use of nanosilica and cement in improving the mechanical behavior of disintegrated carbonaceous mudstone [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(8): 4807–4814. DOI: https://doi.org/10.1166/jnn.2020.18483.

    Article  Google Scholar 

  21. GAO Q F, HATTAB M, JRAD M, FLEUREAU J M, HICHER P Y. Microstructural organization of remoulded clays in relation with dilatancy/contractancy phenomena [J]. Acta Geotechnica, 2020, 15(1): 223–243. DOI: https://doi.org/10.1007/s11440-019-00876-w.

    Article  Google Scholar 

  22. ZIDAN A F, ABOUKHADRA A A, GABER Y. Enhancement of resilient modulus of cohesive soil using an enzymatic preparation [J]. Journal of Central South University, 2019, 26(9): 2596–2608. DOI: https://doi.org/10.1007/s11771-019-4197-1.

    Article  Google Scholar 

  23. ZENG L, XIAO L, ZHANG J, FU H. The role of nanotechnology in subgrade and pavement engineering: A review [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(8): 4607–4618. DOI: https://doi.org/10.1166/jnn.2020.18491.

    Article  Google Scholar 

  24. KONG L W, TAN L R. A simple method of determining the soil-water characteristic curve indirectly [C]//Proceedings of Unsaturated Soils for Asia. Singapore, 2000: 314–345.

  25. VERVOORT R W, CATTLE S R. Linking hydraulic conductivity and tortuosity parameters to pore space geometry and pore-size distribution [J]. Journal of Hydrology, 2003, 272(1–4): 36–49. DOI: https://doi.org/10.1016/S0022-1694(02)00253-6.

    Article  Google Scholar 

  26. GAO Q F, JRAD M, HATTAB M, FLEUREAU J M. Pore morphology, porosity and pore size distribution in kaolinitic remoulded clays under triaxial loading [J]. International Journal of Geomechanics, 2020, 20(6): 04020057. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001682.

    Article  Google Scholar 

  27. KONRAD J M, SAMSON M. Hydraulic conductivity of kaolinite-silt mixtures subjected to closed-system freezing and thaw consolidation [J]. Canadian Geotechnical Journal, 2000, 37(4): 857–869. DOI: https://doi.org/10.1139/t00-003.

    Article  Google Scholar 

  28. PAYAN M, KHOSHINI M, JAMSHIDI CHENARI R. Elastic dynamic Young’s modulus and Poisson’s ratio of sand-silt mixtures [J]. Journal of Materials in Civil Engineering, 2020, 32(1): 04019314. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002991.

    Article  Google Scholar 

  29. ZHOU W, XU K, MA G, YANG L, CHANG X. Effects of particle size ratio on the macro-and microscopic behaviors of binary mixtures at the maximum packing efficiency state [J]. Granular Matter, 2016, 18(4): 81. DOI: https://doi.org/10.1007/s10035-016-0678-1.

    Article  Google Scholar 

  30. CHANG C S, MEIDANI M. Dominant grains network and behavior of sand-silt mixtures: stress-strain modeling [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(15): 2563–2589. DOI: https://doi.org/10.1002/nag.2152.

    Article  Google Scholar 

  31. KONRAD J M, SAMSON M. Influence of freezing temperature on hydraulic conductivity of silty clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(2): 180–187. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2000)126:2(180).

    Article  Google Scholar 

  32. van GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1 [J]. Soil Science Society of America Journal, 1980, 44(5): 892–898. DOI: https://doi.org/10.2136/sssaj1980.03615995004400050002x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-ning Shi  (史振宁).

Additional information

Foundation item: Projects(51908069, 51908073, 51838001, 51878070) supported by the National Natural Science Foundation of China; Project(2019SK2171) supported by the Key Research and Development Program of Hunan Province, China; Project(kfj190605) supported by the Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province (Changsha University of Science & Technology), China; Project(2019IC04) supported by the Double First-Class Scientific Research International Cooperation Expansion Project of Changsha University of Science & Technology, China; Project(kq1905043) supported by the Training Program for Excellent Young Innovators of Changsha, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Qf., Shi, Zn., Luo, Jt. et al. Microstructural insight into permeability and water retention property of compacted binary silty clay. J. Cent. South Univ. 27, 2068–2081 (2020). https://doi.org/10.1007/s11771-020-4431-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4431-x

Key words

关键词

Navigation