Skip to main content
Log in

Use of X-ray computed tomography to study structures and particle contacts of granite residual soil

基于微观层析成像技术的花岗岩残积土颗粒接触方式研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied. The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges (d< 0.075 mm, 0.075 mm≤d<0.1 mm, 0.1 mm≤d<0.2 mm, 0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm) to study the structures and particle contacts of granite residual soil. The X-ray micro computed tomography method was used to reconstruct the microstructure of granite residual soil. The particle was identified and regularized using principal component analysis (PCA). The particle contacts and geometrical characteristics in 3D space were analyzed and summarized using statistical analyses. The results demonstrate that the main types of contact among the particles are face-face, face-angle, face-edge, edge-edge, edge-angle and angle-angle contacts for particle sizes less than 0.2 mm. When the particle sizes are greater than 0.2 mm, the contacts are effectively summarized as face-face, face-angle, face-edge, edge-edge, edge-angle, angle-angle, sphere-sphere, sphere-face, sphere-edge and sphere-angle contacts. The differences in porosity among the original sample, reconstructed sample and regularized sample are closely related to the water-swelling and water-disintegrable characteristics of granite residual soil.

摘要

颗粒的接触方式以及颗粒的规则化处理对于研究岩土力学性质非常关键。本次研究中采集到了 广州及福建地区的花岗岩残积土, 在实验室条件下将其分别筛分成五种不同的粒组(d<0.075 mm≤d<0.1 mm, 0.1 mm≤d<0.2 mm, 0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm), 基于微观层析成像 技术研究颗粒之间的接触方式。利用主成分分析法对组成颗粒的体素进行识别和搜索, 确定颗粒的中 心、方向及尺寸; 基于笛卡尔空间坐标系, 根据相邻颗粒关键位置的空间坐标, 对其接触方式进行判 定。结果显示, 当花岗岩残积土颗粒粒径小于 0.2 mm 时, 颗粒接触方式主要包含面-面、面-角、面-棱、棱-棱、棱-角、角-角接触; 当颗粒粒径大于 0.2 mm 时, 颗粒接触方式主要包含面-面、面-角、面 -棱、棱-棱、棱-角、角-角、球-球、球-面、球-棱、球-角接触。土样的原始孔隙率、重建后的孔隙率 及规则化后的孔隙率三者之间存在差异, 这主要与花岗岩残积土遇水膨胀及崩解特性有关。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SUN Yin-lei, TANG Lian-sheng, LU Wei, ZHAO Zhan-lun. Study on the shear properties of granite residual soil in Guangzhou Area with different testing methods [J]. Fresen Environ Bull, 2018, 27(1): 327–335. http://www.prt-parlar.de/download_feb_2018/.

    Google Scholar 

  2. KIM C, KIM T. Behavior of unsaturated weathered residual granite soil with initial water contents [J]. Engineering Geology, 2010, 113(1–4): 1–10. DOI: https://doi.org/10.1016/j.enggeo.2009.09.004.

    Article  Google Scholar 

  3. ZENG Ling, BIAN Han-bing, SHI Zhen-ning, HE Zhong-ming. Forming condition of transient saturated zone and its distribution in residual slope under rainfall conditions [J]. Journal of Central South University, 2017, 24(8): 1866–1880. DOI: https://doi.org/10.1007/s11771-017-3594-6.

    Article  Google Scholar 

  4. POWERS M. A new roundness scale for sedimentary particles [J]. Journal of Sedimentary Research, 1953, 23(2): 117–119. DOI: https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D.

    Google Scholar 

  5. LI Xiong-wei, WANG Yong, YU Jing-wei. Unsaturated expansive soil fissure characteristics combined with engineering behaviors [J]. Journal of Central South University, 2012, 19(12): 3564–3571. DOI: https://doi.org/10.1007/s11771-012-1444-0.

    Article  Google Scholar 

  6. ALSHIBLI K, DRUCKREY A, WEISKITTEL T, LAVRIK N. Quantifying morphology of sands using 3D imaging [J]. Journal of Materials in Civil Engineering, 2013, 27(10): 1–10. DOI: 10.1061/(ASCE)MT.1943-5533.0001246.

    Google Scholar 

  7. FONSECA J, O’SULLIVAN C, COOP M. Non-invasive characterization of particle morphology of natural sands [J]. Soils & Foundations, 2012, 52(4): 712–722. DOI: https://doi.org/10.1016/j.sandf.2012.07.011.

    Article  Google Scholar 

  8. SUN Y, INDRARATNA B, NIMBALKAR S. Three-dimensional characterisation of particle size and shape for ballast [J]. Géotechnique Letters, 2014, 4: 197–202. DOI:https://doi.org/10.1680/geolett.14.00036.

    Article  Google Scholar 

  9. ZHOU Bo, WANG Jian-feng, ZHAO Bu-di. Micromorphology characterization and reconstruction of sand particles using micro X-ray tomography and spherical harmonics [J]. Engineering Geology, 2015, 184(14): 126–137. DOI: https://doi.org/10.1016/j.enggeo.2014.11.009.

    Article  Google Scholar 

  10. ZUO Chang-qun, LIU Dai-guo, DING Shao-lin. Micro-characteristics of strength reduction of tuff residual soil with different moisture [J]. KSCE Journal of Civil Engineering, 2016, 20(2): 639–646. DOI: https://doi.org/10.1007/s12205-015-0408-y.

    Article  Google Scholar 

  11. WANG Qing. A study on the structure and composition of granite residual soil in Eastern China [J]. Journal of Jilin University, 1991, 21(1): 70–81. (in Chinese)

    Google Scholar 

  12. SHI Bin. Quantitative assessment of changes of microstructure for clayey soil in the process of compaction [J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 57–62. (in Chinese)

    MathSciNet  Google Scholar 

  13. IRFAN T. Mineralogy, fabric properties and classification of weathered granites in Hong Kong [J]. Quarterly Journal of Engineering Geology & Hydrogeology, 1996, 29(1): 5–35. DOI: https://doi.org/10.1144/GSL.QJEGH.1996.029.P1.02.

    Article  Google Scholar 

  14. HU Rui-lin, LI Xiang-quan, GUAN Guo-lin. Soil micromechanics concept, view and core [J]. Acta Geoscientia Sinica, 1999, 20(2): 150–156. (in Chinese)

    Google Scholar 

  15. WU Neng-sen. Study on classification of granite residual soils [J]. Rock & Soil Mechanics, 2006, 27(12): 2299–2304. (in Chinese)

    Google Scholar 

  16. TANG Lian-sheng, SANG Hai-tao, SONG Jing. Research on soil particle joint function and brittle-elastoplastic cement damage model of unsaturated granite residual soil [J]. Yantu Lixue/Rock & Soil Mechanics, 2013, 34(10): 2877–2888. (in Chinese)

    Google Scholar 

  17. LI Jian-xin, CHEN Qiu-nan, ZHAO Liu. Experimental research on disintegration characteristics of weathered granite in Nanyue [J]. Chinese Journal of Underground Space and Engineering, 2015, 11(s1): 119–123. (in Chinese)

    MathSciNet  Google Scholar 

  18. STOOPS G. Application of micro-morphological methods to the study of soil sequences in the tropics [C]//Libro de Ponencias, Congreso Extraordinario 50 Aniversario Sociedad Espanola de Ciencia del Suelo. Madrid, 1997: 145–159.

    Google Scholar 

  19. SCOLLOLAVIZZARI G, EICHHORN K, WÜTHRICH R. Computerized transverse axial tomography (CTAT) in the diagnosis of epilepsy [J]. European Neurology, 1977, 15(1): 5–8. DOI: https://doi.org/10.1159/000114782.

    Article  Google Scholar 

  20. PETROVIC A, SIEBERT J, RIEKE P. Soil bulk density analysis in three dimensions by computed tomographic scanning [J]. Soil Science Society of America Journal, 1982, 46(3): 445–450. DOI: https://doi.org/10.2136/sssaj1982.03615995004600030001x.

    Article  Google Scholar 

  21. CHEN Yu-long. Permeability evolution of sandstone under multi-field coupling [J]. Journal of Central South University, 2017, 48(9): 2449–2457. DOI: https://doi.org/10.11817/j.issn.1672-7207.2017.09.025.

    Google Scholar 

  22. BECKERS E, PLOUGONVEN E, ROISIN C, HAPCA S, LÉONARD A, DEGRÉ A. X-ray microtomography: A porosity-based thresholding method to improve soil pore network characterization? [J]. Geoderma, 2014, s219: 145–154. DOI: https://doi.org/10.1016/j.geoderma.2014.01.004.

    Article  Google Scholar 

  23. CHATTERJEE N, FLURY M. Effect of particle shape on capillary forces acting on particles at the air-water interface [J]. Langmuir the ACS Journal of Surfaces & Colloids, 2013, 29(25): 7903–7911. DOI: https://doi.org/10.1021/la4017504.

    Article  Google Scholar 

  24. KETCHAM R. Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography [J]. Journal of Structural Geology, 2005, 27(7): 1217–1228. DOI: 10.1016/j.jsg.2005.02.006.

    Article  Google Scholar 

  25. CHEN R, DREOSSI D, MANCINI L, MENK R, RIGON L, XIAO T, LONGO R. PITRE: Software for phase-sensitive X-ray image processing and tomography reconstruction [J]. Journal of Synchrotron Radiation, 2012, 19(Pt 5): 836–845. DOI: https://doi.org/10.1107/S0909049512029731.

    Article  Google Scholar 

  26. LIU J, PEREIRA G, REGENAUER K. From characterisation of pore-structures to simulations of pore-scale fluid flow and the upscaling of permeability using microtomography: A case study of heterogeneous carbonates [J]. Journal of Geochemical Exploration, 2014, 144(5): 84–96. DOI: https://doi.org/10.1016/j.gexplo.2014.01.021.

    Article  Google Scholar 

  27. DRUCKREY A, ALSHIBLI K, AL-RAOUSH R. 3D characterization of sand particle-to-particle contact and morphology [J]. Computers & Geotechnics, 2016, 74: 26–35. DOI: https://doi.org/10.1016/j.compgeo.2015.12.014.

    Article  Google Scholar 

  28. ARCHIBALD C, KWOK P. Research in computer and robot vision [M]. World Scientific, 1995.

    Book  Google Scholar 

  29. AL-RAOUSH R. Microstructure characterization of granular materials [J]. Physica A Statistical Mechanics & Its Applications, 2007, 377(2): 545–558. DOI: https://doi.org/10.1016/j.physa.2006.11.090.

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the Beam Line (BL13W1) of the Shanghai Synchrotron Radiation Facility (SSRF) for supporting the use of the radiation source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-sheng Tang  (汤连生).

Additional information

Foundation item: Projects(41572277, 41877229) supported by the National Natural Science Foundation of China; Project(2015A030313118) supported by the Natural Science Foundation of Guangdong Province, China; Project(201607010023) supported by the Science and Technology Program of Guangzhou, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Yl., Tang, Ls. Use of X-ray computed tomography to study structures and particle contacts of granite residual soil. J. Cent. South Univ. 26, 938–954 (2019). https://doi.org/10.1007/s11771-019-4062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4062-2

Key words

关键词

Navigation