Skip to main content
Log in

Effect of bolt inclination angle on shear behavior of bolted joints under CNL and CNS conditions

常法向荷载和常法向刚度条件下不同锚固角度加锚节理岩体的剪切试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass. The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance. In this study, a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt. Then, the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions. Results indicated that rock bolt could significantly improve the shear behavior of rock joints, especially in the post-yield deformation region. With the increase of bolt inclination angle, both the maximum shear stress and the maximum friction coefficient increased first and then decreased, while the maximum normal displacement decreased monotonously. Compared with CNL conditions, the maximum shear stress was larger, whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions. Furthermore, more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane.

摘要

锚杆广泛应用于节理岩体加固领域, 能够显著地提升节理岩体的抗剪性能。为研究锚固倾角和 法向边界条件对加锚节理岩体剪切性能的影响, 本文采用了基于3D 扫描和打印技术的新型加锚节理 试样制备方法准备了一批含不同锚固角度的加锚节理试样, 并开展了常法向荷载和常法向刚度条件下 的直接剪切试验。结果表明, 安装锚杆后, 尤其是在峰后阶段, 节理面抗剪性能显著提升。随着锚固 角度的增大, 最大剪应力和最大摩擦系数均呈现先增大后减小的非线性变化趋势, 而最大法向位移单 调减小, 存在最优锚固角度。对比CNL 与CNS 试验结果发现CNS 条件下加锚节理岩体具有更高的 剪切强度以及更低的法向位移和摩擦系数。此外, CNS 试验后节理表面损伤更加严重。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI C C, STILLBORG B. Analytical models for rock bolts. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(8): 1013–1029. DOI: 10.1016/S1365-1609(99)00064-7.

    Article  Google Scholar 

  2. CHEN Y. Experimental study and stress analysis of rock bolt anchorage performance. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(5): 428–437. DOI: 10.1016/j.jrmge.2014.06.002.

    Article  Google Scholar 

  3. LI Xu-wei, NEMCIK J, MIRZAGHORBANALI A, AZIZ Y N, RASEKH H. Analytical model of shear behaviour of a fully grouted cable bolt subjected to shearing. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 31–39. DOI: 10.1016/j.ijrmms.2015. 09.005.

    Article  Google Scholar 

  4. KANG Hong-pu, WU Yong-zheng, GAO Fu-qiang, LIN Jian, JIANG Peng-fei. Fracture characteristics in rock bolts in underground coal mine roadways. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 105–112. DOI: 10.1016/j.ijrmms. 2013.04.006.

    Article  Google Scholar 

  5. BLANCO M L, TIJANI M, HADJ- HASSEN F, NOIRET A. Assessment of the bolt-grout interface behaviour of fully grouted rockbolts from laboratory experiments under axial loads. International Journal of Rock Mechanics and Mining Sciences, 2013, 63: 50–61. DOI: 10.1016/j.ijrmms.2013.06.007.

    Article  Google Scholar 

  6. JALALIFAR H. An analytical solution to predict axial load along fully grouted bolts in an elasto-plastic rock mass. Journal of the Southern African Institute of Mining and Metallurgy, 2011, 111(11): 809–814. http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532011001100014.

    Google Scholar 

  7. CHEN Jian-hang, HAGAN P C, SAYDAM S. Parametric study on the axial performance of a fully grouted cable bolt with a new pull-out test. International Journal of Mining Science and Technology, 2016, 26(1): 53–58. DOI: 10.1016/j.ijmst.2015.11.010.

    Article  Google Scholar 

  8. KILIC A, YASAR E, CELIK A G. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt. Tunnelling and Underground Space Technology, 2002, 17(4): 355–362. DOI: 10.1016/S0886-7798(02)00038-X.

    Article  Google Scholar 

  9. LI C C, KRISTJANSSON G, HØ IEN A H. Critical embedment length and bond strength of fully encapsulated rebar rockbolts. Tunnelling and Underground Space Technology, 2016, 59: 16–23. DOI: 10.1016/j.tust.2016. 06.007.

    Article  Google Scholar 

  10. THENEVIN I, BLANCO-MARTÍN L, HADJ-HASSEN F, SCHLEIFER J, LUBOSIK Z, WRANA A. Laboratory pull-out tests on fully grouted rock bolts and cable bolts: Results and lessons learned. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(5): 843–855. DOI: 10.1016/j.jrmge.2017.04.005.

    Article  Google Scholar 

  11. LI C C. Principles of rockbolting design. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(3): 396–414. DOI: 10.1016/j.jrmge.2017.04.002.

    Article  Google Scholar 

  12. ZHAO Lian-heng, TAN Yi-gao, NIE Zhi-hong, YANG Xin-ping, HU Shi-hong. Variation analysis of ultimate pullout capacity of shallow horizontal strip anchor plate with 2-layer overlying soil based on nonlinear M-C failure criterion. Journal of Central South University, 2018, 25(11): 2802–2818. DOI: 10.1080/19648189.2019.1626288.

    Article  Google Scholar 

  13. ZHANG Chuan-qing, CUI Guo-jian, ZHOU Hui, LIU Li-peng, LIU Zhen-jiang, LU Jing-jing, CHENG Guang-tan. Experimental study on shear and deformation characteristics of the rod-grout interface. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 820–828. DOI: 10.13722/j.cnki.jrme.2017.1090. (in Chinese)

    Google Scholar 

  14. ZHANG Chuan-qing, CUI Guo-jian, DENG Liang, ZHOU Hui, LU Jing-jing, DAI Feng. Laboratory investigation on shear behaviors of bolt-grout interface subjected to constant normal stiffness. Rock Mechanics and Rock Engineering, 2020, 53(3): 1333–1347. DOI: 10.1007/s00603-019-01983-6.

    Article  Google Scholar 

  15. YOSHINAKA R, SAKAGUCHI S, SHIMIZU T, ARAI H, KATO E. Experimental study on the rock bolt reinforcement in discontinuous rocks [C]//6th ISRM Congress. Australia: International Society for Rock Mechanics and Rock Engineering, 1987: 1325–1328.

    Google Scholar 

  16. SPANG K, EGGER P. Action of fully-grouted bolts in jointed rock and factors of influence. Rock Mechanics and Rock Engineering, 1990, 23(3): 201–229. DOI: 10.1007/BF01022954.

    Article  Google Scholar 

  17. CHEN Na, ZHANG Xiao-bo, JIANG Qing-hui, FENG Xi-xia, WEI Wei, YI Bing. Shear behavior of rough rock joints reinforced by bolts. International Journal of Geomechanics, 2018, 18(1): 04017130. DOI: 10.1061/(ASCE)GM.1943-5622.0001048.

    Article  Google Scholar 

  18. WANG Gang, ZHANG Yong-zheng, JIANG Yu-jing, LIU Pei-yun, GUO Yan-shaung, LIU Jian-kang, MA Ming, WANG Ke, WANG Shu-gang. Shear behaviour and acoustic emission characteristics of bolted rock joints with different roughnesses. Rock Mechanics and Rock Engineering, 2018, 51(6): 1885–1906. DOI: 10.1007/s00603-018-1438-9.

    Article  Google Scholar 

  19. WU Xue-zhen, JIANG Yu-jing, LI Bo. Influence of joint roughness on the shear behaviour of fully encapsulated rock bolt. Rock Mechanics and Rock Engineering, 2018, 51(3): 953–959. DOI: 10.1007/s00603-017-1365-1.

    Article  Google Scholar 

  20. GHADIMI M, SHAHRIAR K, JALALIFAR H. Analysis profile of the fully grouted rock bolt in jointed rock using analytical and numerical methods. International Journal of Mining Science and Technology, 2014, 24(5): 609–615. DOI: 10.1016/j.ijmst.2014.07.009.

    Article  Google Scholar 

  21. LI Xu-wei, AZIZ N, MIRZAGHORBANALI A, NEMCIK J. Comparison of the shear test results of a cable bolt on three laboratory test apparatuses. Tunnelling and Underground Space Technology, 2017, 61: 82–89. DOI: 10.1016/j.tust. 2016.10.003.

    Article  Google Scholar 

  22. GRASSELLI G. 3D behaviour of bolted rock joints: Experimental and numerical study. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(1): 13–24. DOI: 10.1016/j.ijrmms.2004.06.003.

    Article  Google Scholar 

  23. HAAS C J. Shear resistance of rock bolts. Trans Soc Min Eng AIME, 1976, 260(1): 32–41. DOI: 10.1016/0148-9062(76)91671-5.

    Google Scholar 

  24. SHRIVASTAVA A K, RAO K S. Shear Behaviour of rock joints under CNS boundary conditions. Geotech Geol Eng, 2013, 33(5): 961–964. DOI: 10.1007/s10706-015-9896-2.

    Google Scholar 

  25. JIANG Yu-jing, XIAO Jun, TANABASHI Y, MIZOKAMI T. Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 275–286. DOI: 10.1016/j.ijrmms. 2003.08.004.

    Article  Google Scholar 

  26. LEE Y K, PARK J W, SONG J J. Model for the shear behavior of rock joints under CNL and CNS conditions. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 252–263. DOI: 10.1016/j.ijrmms.2014. 05.005.

    Article  Google Scholar 

  27. GU X F, SEIDEL J P, HABERFIELD C M. Direct shear test of sandstone-concrete joints. International Journal of Geomechanics, 2003, 3(1): 21–33. DOI: 10.1061/(ASCE) 1532-3641(2003)3:1(21).

    Article  Google Scholar 

  28. SHANG Jun-long, ZHAO Zhi-ye, MA Shu-qi. On the shear failure of incipient rock discontinuities under CNL and CNS boundary conditions: Insights from DEM modelling. Engineering Geology, 2018, 234: 153–166. DOI: 10.1016/j.enggeo.2018.01.012.

    Article  Google Scholar 

  29. FAN Wen-chen, CAO Ping, LONG Long. Degradation of joint surface morphology, shear behavior and closure characteristics during cyclic loading. Journal of Central South University, 2018, 25(3): 653–661. DOI: 10.1007/s11771-018-3768-x.

    Article  Google Scholar 

  30. INDRARATNA B, AZIZ N, DEY A. Modeling of bolted joint behaviour under constant normal stiffness conditions [C]//An International Conference on Geotechnical & Geological Engineering. Pennsylvania, USA, 2000. http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1714&context=engpapers.

    Google Scholar 

  31. BARTON N. Review of a new shear-strength criterion for rock joints. Engineering Geology, 1973, 7(4): 287–332. DOI: 10.1016/0013-7952(73)90013-6.

    Article  Google Scholar 

  32. TSE R, CRUDEN D M. Estimating joint roughness coefficients. International Journal of Rock Mechanics and Mining Sciences, 1979, 16(5): 303–307. DOI: 10.1016/0148-9062(79)90241-9.

    Article  Google Scholar 

  33. TATONE B S A, GRASSELLI G. A new 2D discontinuity roughness parameter and its correlation with JRC. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(8): 1391–1400. DOI: 10.1016/j.ijrmms.2010.06.006.

    Article  Google Scholar 

  34. FICKER T. Fractal properties of joint roughness coefficients. International Journal of Rock Mechanics and Mining Sciences, 2017, 94(3): 27–31. DOI: 10.1016/j.ijrmms.2017. 02.014.

    Article  Google Scholar 

  35. LI Yu-zong, LIU Cai-hua. Experimental study on the shear behavior of fully grouted bolts. Construction and Building Materials, 2019, 223: 1123–1134. DOI: 10.1016/j.conbuildmat.2019.06.207.

    Article  Google Scholar 

  36. LIU Cai-hua, LI Yu-zong. Analytical study of the mechanical behavior of fully grouted bolts in bedding rock slopes. Rock Mechanics and Rock Engineering, 2017, 50(9): 2413–2423. DOI: 10.1007/s00603-017-1244-9.

    Article  Google Scholar 

  37. SOW D, RIVARD P, PEYRAS L, MORADIAN Z A, BACCONNET C, BALLIVY G. Comparison of joint shearing resistance obtained with the Barton and Choubey criterion and with direct shear tests. Rock Mechanics and Rock Engineering, 2016, 49(8): 3357–3361. DOI: 10.1007/s00603-015-0898-4.

    Article  Google Scholar 

  38. DU Shi-gui, HU Yun-jin, HU Xiao-fei, GUO Xiao. Comparison between empirical estimation by JRC-JCS model and direct shear test for joint shear strength. Journal of Earth Science, 2011, 22(3): 411–420. DOI: 10.1007/s12583-011-0193-6.

    Article  Google Scholar 

  39. BARTON N. The shear strength of rock and rock joints. International Journal of Rock Mechanics and Mining Sciences, 1976, 13(9): 255–279. DOI: 10.1016/0148-9062(76)90003-6.

    Article  Google Scholar 

  40. NIKTABAR S M M, RAO K S, SHRIVASTAVA A K. Effect of rock joint roughness on its cyclic shear behavior. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(6): 1071–1084. DOI: 10.1016/j.jrmge.2017.09.001.

    Article  Google Scholar 

  41. SHANG Jun-long, YOKOTA Y, ZHAO Zhi-ye, DANG Wen-gang. DEM simulation of mortar-bolt interface behaviour subjected to shearing. Construction and Building Materials, 2018, 185: 120–137. DOI: 10.1016/j.conbuildmat.2018.07.044.

    Article  Google Scholar 

  42. LI C C. Field observations of rock bolts in high stress rock masses. Rock Mechanics and Rock Engineering, 2010, 43(4): 491–496. DOI: 10.1007/s00603-009-0067-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-qing Zhang PhD  (张传庆).

Additional information

Foundation item: Project(U1865203) supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China; Project(51279201) supported by the National Natural Science Foundation of China; Projects(2019YFC0605103, 2019YFC0605100) supported by the National Key R&D Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Gj., Zhang, Cq., Chen, Jl. et al. Effect of bolt inclination angle on shear behavior of bolted joints under CNL and CNS conditions. J. Cent. South Univ. 27, 937–950 (2020). https://doi.org/10.1007/s11771-020-4342-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4342-x

Key words

关键词

Navigation