Skip to main content
Log in

Effects of axial static stress on stress wave propagation in rock considering porosity compaction and damage evolution

考虑空隙压密及损伤演化的轴向静应力对岩石应力波传播的影响研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A wave equation of rock under axial static stress is established using the equivalent medium method by modifying the Kelvin-Voigt model. The analytical formulas of longitudinal velocity, space and time attenuation coefficients and response frequency are obtained by solving the equation using the harmonic method. A series of experiments on stress wave propagation through rock under different axial static stresses have been conducted. The proposed models of stress wave propagation are then verified by comparing experimental results with theoretical solutions. Based on the verified theoretical models, the influences of axial static stress on longitudinal velocity, space and time attenuation coefficients and response frequency are investigated by detailed parametric studies. The results show that the proposed theoretical models can be used to effectively investigate the effects of axial static stress on the stress wave propagation in rock. The axial static stress influences stress wave propagation characteristics of porous rock by varying the level of rock porosity and damage. Moreover, the initial porosity, initial elastic modulus of the rock voids and skeleton, viscous coefficient and vibration frequency have significant effects on the P-wave velocity, attenuation characteristics and response frequency of the stress wave in porous rock under axial static stress.

摘要

本文基于等效介质方法,通过改进Kelvin-Voigt 模型,建立了具有轴向静应力空隙岩石的波动 方程。利用谐波法求解波动方程,得到了用纵波波速、时空衰减系数和响应频率等表征的应力波传播 理论模型。选用红砂岩制备岩石试件,进行了室内具有轴向静应力岩石的应力波传播试验。通过对比 试验和理论模型结果,验证了应力波传播模型的正确性。基于应力波传播理论模型,通过参数研究方 法探讨了轴向静应力对岩石应力波波速、时空衰减系数和响应频率的影响。结果表明,本文提出的应 力波传播理论可以有效表征轴向静应力对岩石应力波传播的影响,轴向静应力通过改变岩石的有效孔 隙度和损伤度影响岩石的应力波传播特性。初始空隙度、岩石空隙和骨架的初始模量、黏性系数和振 动频率对岩石应力波波速、衰减系数以及响应频率等都有较大的影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HEIDARI M, KHANLARI G R, TORABI-KAVEH M, KARGARIAN S, SANEIE S. Effect of porosity on rock brittleness [J]. Rock Mech Rock Eng, 2014, 47: 785–790. DOI: 10.1007/s00603-013-0400-0.

    Article  Google Scholar 

  2. PATRICK B, WONG T F, ZHU W. Effects of porosity and crack density on the compressive strength of rocks [J]. Int J Rock Mech Min Sci, 2014, 67: 202–211. DOI: 10.1016/j.ijrmms.2013.08.031.

    Article  Google Scholar 

  3. HAN De-hua, NUR A, MORGAN D. Effects of porosity and clay content on wave velocities in sandstones [J]. Geophysics, 1986, 51: 2093–2107. DOI: 10.1190/1.1442062.

    Article  Google Scholar 

  4. HOU Rong-bin, ZHANG Kai, TAO Jing, XUE Xin-ran, CHEN Yan-long. A nonlinear creep damage coupled model for rock considering the effect of initial damage [J]. Rock Mech Rock Eng, 2019, 52: 1275–1285. DOI: 10.1007/s00603-018-1626-7.

    Article  Google Scholar 

  5. MENG Qing-bin, ZHANG Ming-wei, HAN Li-jun, PU Hai, CHEN Yan-long. Acoustic emission characteristics of red sandstone specimens under uniaxial cyclic loading and unloading compression [J]. Rock Mech Rock Eng, 2018, 51(4): 969–988. DOI: 10.1007/s00603-017-1389-6.

    Article  Google Scholar 

  6. MUNOZ H, TAHERI A, CHANDA E K. Pre-peakand post-peak rock strain characteristics during uniaxial compression by 3D digital image correlation [J]. Rock Mech Rock Eng, 2016, 49(7): 2541–2554. DOI: 10.1007/s00603-016-0935-y.

    Article  Google Scholar 

  7. LI Yan-rong, HUANG Da, LI Xi-an. Strain rate dependency of coarse crystal marble under uniaxial compression: strength, deformation and strain energy [J]. Rock Mech Rock Eng, 2014, 47(4): 1153–1164. DOI: 10.1007/s00603-013-0472-x.

    Article  MathSciNet  Google Scholar 

  8. FENG Xia-ting, CHEN Si-li, ZHOU Hui. Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion [J]. Int J Rock Mech Min Sci, 2004, 41(2): 181–192. DOI:10.1016/S1365-1609(03)00059-5.

    Article  Google Scholar 

  9. WONG Teng-fong, BAUD P. The brittle-ductile transition in porous rock: A review [J]. J Struct Geol, 2012, 44: 25–53. DOI: 10. 1016/j.jsg.2012.07.010.

    Article  Google Scholar 

  10. JIN Jie-fang, LI Xi-bing, YIN Zhi-qiang, ZOU Yang. A method for defining rock damage variable by wave impedance under cyclic impact loadings [J]. Rock and Soil Mechanics, 2011, 32(5): 1385–1393,1410. DOI:10.1631/jzus.B1000185.

    Google Scholar 

  11. SUN Qiang, ZHU Shu-yun. Wave velocity and stress/strain in rock brittle failure [J]. Environ Earth Sci, 2014, 72(3): 861–866. DOI: 10.1007/s12665-013-3009-4.

    Article  Google Scholar 

  12. CHEN Xiang, SUN Jin-zhong, TAN Chao-shuang, ZHANG Jie-kun, XU Zhao-yi. Relation between P-wave velocity and stress of rock samples and their unloading effect [J]. Chin J Rock Mech Eng, 2010, 32: 757–761. http://manu31.magtech. com.cn/Jwk_ytgcxb/CN/.

    Google Scholar 

  13. FREUND D. Ultrasonic compressional and shear velocities in dry clastic rocks as a function of porosity, clay content, and confining pressure [J]. Geophys J Int, 1992, 108(1): 125–135. DOI: 10.1111/j.1365-246X.1992.tb00843.x.

    Article  Google Scholar 

  14. MOGILEVSKAYA S G, LECAMPION B. A lined hole in a viscoelastic rock under biaxial far-field stress [J]. Int J Rock Mech Min, 2018, 106: 350–363. DOI: 10.1016/j.ijrmms.2018.02.019.

    Article  Google Scholar 

  15. ZHANG Jian-zhi, ZHOU Xiao-ping, YIN Peng. Viscoplastic deformation analysis of rock tunnels based on fractional derivatives [J]. Tunn Undergr Space Technol, 2019, 85: 209–219. DOI: 10.1016/j.tust.2018.12.019.

    Article  Google Scholar 

  16. CAO Wen-gui, ZHANG Chao, HE Min, LIU Tao. Statistical damage simulation method of strain softening deformation process for rocks considering characteristics of void compaction stage [J]. Chin J Rock Mech Eng, 2016, 38: 1754–1761. DOI: 10.11779/CJGE201610002.

    Google Scholar 

  17. BERRYMAN, JAMES G. Long wavelength propagation in composite elastic media II. Ellipsoidal inclusions [J]. J Acoust Soc Am, 1980, 68(6): 1820–1831. DOI: 10.1121/1.385172.

    Article  Google Scholar 

  18. CAO Cheng-hao, FU Li-yun, BA Jing, ZHANG Yan. Frequency-and incident-angle-dependent P-wave properties influenced by dynamic stress intera-ctions in fractured porous media [J]. Geophysics, 2019, 84(5): 1–53. DOI: 10.1190/geo2018-0103.1.

    Article  Google Scholar 

  19. ZHANG Lin, BA Jing, CARCIONE J M, SUN Wei-tao. Modeling wave propagation in cracked porous media with penny-shaped inclusions [J]. Geophysics, 2019, 84(4): 1–38. DOI: 10.1190/GEO2018-0487.1.

    Article  Google Scholar 

  20. LI J C, LI H B, ZHAO J. An improved equivalent viscoelastic medium method for wave propagation across layered rock masses [J]. Int J Rock Mech Min Sci, 2015,73: 62–69. DOI:10.1016/j.ijrmms.2014.10.008.

    Article  Google Scholar 

  21. FAN L F, SUN H Y. Seismic wave propagation through an in-situ stressed rock mass [J]. J Appl Geophys, 2015, 121: 13–20. DOI: 10.1016/j.jappgeo.2015.07.002.

    Article  Google Scholar 

  22. ZHAO J, ZHAO X B, CAI J G. A further study of P-wave attenuation across parallel fractures with linear deformational behaviour [J]. Int J Rock Mech Min Sci, 2006, 43(5): 776–788. DOI: 10.1016/j.ijrmms.2005.12.007.

    Article  Google Scholar 

  23. LI J C, LI H B, MA G W, ZHAO J. A time-domain recursive method to analyse transient wave propagation across rock joints [J]. Geophys J Int, 2012, 188(2): 631–644. DOI: 10.1111/j.1365-246X.2011.05286.x.

    Article  Google Scholar 

  24. NIU Lei-lei, ZHU Wang-cheng, LI Shao-hua, GUAN Kai. Dete-rmining the viscosity coefficient for viscoelastic wave propagation in rock bars [J]. Rock Mech Rock Eng, 2018, 51(5): 1347–1359. DOI: 10.1007/s00603-018-1407-3.

    Article  Google Scholar 

  25. FAN L F, MA G W, LI J C. Nonlinear viscoelastic medium equivalence for stress wave propagation in a jointed rock mass [J]. Int J Rock Mech Min Sci, 2012, 50: 11–18. DOI: 10.1016/j.ijrmms.2011.12.008.

    Article  Google Scholar 

  26. WANG Rui, HU Zhi-ping, ZHANG Dan, WANG Qi-yao. Propagation of the stress wave through the filled joint with linear viscoelastic deformation behavior using time-domain recursive method [J]. Rock Mech Rock Eng, 2017, 50(12): 3197–3207. DOI: 10.1007/s00603-017-1301-4.

    Article  Google Scholar 

  27. WANG Li-li. Foundations of stress waves [M]. Amsterdam: Elsevier, 2007. DOI: 10.1016/B978-008044494-9/50014-7.

    Google Scholar 

  28. LI Xi-bing B, ZHOU Zi-long, LOK T S, HONG Liang, YIN Tu-bing. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. Int J Rock Mech Min Sci, 2008, 45(5): 739–748. DOI:10.1016/j.ijrmms.2007.08.013.

    Article  Google Scholar 

  29. LIU Cang-li, AHRENS T J. Stress wave attenuation in shock-damaged rock [J]. J Geophys Res, 1997, 102(B3): 5243–5250. DOI: 10.1029/96jb03891.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-fang Jin  (金解放).

Additional information

Foundation item: Projects(51664017, 51964015) supported by the National Natural Science Foundation of China; Project(JXUSTQJBJ2017007) supported by the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology, China; Projects(GJJ160616, GJJ171490) supported by Science and Technology Project of Jiangxi Provincial Department of Education, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Jf., Yuan, W., Wu, Y. et al. Effects of axial static stress on stress wave propagation in rock considering porosity compaction and damage evolution. J. Cent. South Univ. 27, 592–607 (2020). https://doi.org/10.1007/s11771-020-4319-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4319-9

Keywords

关键词

Navigation