Skip to main content
Log in

Variability of leaf functional traits of invasive tree Rhus typhina L. in North China

入侵树种火炬树叶功能性状在中国北部的变异性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Functional traits, specifically leaf functional traits, are core-topics to explore importance to the invasion success of invasive plant species. This study aims to address the differences in leaf functional traits and their corresponding variability of the invasive tree staghorn sumac Rhus typhina L. with different invasion success, including lower and higher invasion success, in two climatic regions in North China, including a warm temperate region and a cold temperate region. No significant differences were found for leaf functional traits of staghorn sumac across different invasion success. However, the variability of leaf chlorophyll and nitrogen concentrations of staghorn sumac under higher invasion success were approximately 66.023% and 68.615% higher than those under lower invasion success, respectively. The leaf chlorophyll and nitrogen concentrations of staghorn sumac in the warm temperate region were approximately 18.432% and 16.337% higher than those in cold temperate region, respectively. The variability of specific leaf area of staghorn sumac in warm temperate region was approximately 59.802% higher than that in cold temperate region. Accordingly, leaf chlorophyll and N concentrations as well as specific leaf area of staghorn sumac and their corresponding variability may play an essential role in shaping ecological success of studied invader along a climatic gradient.

摘要

功能性状, 特别是叶功能性状, 是探究入侵植物成功入侵的核心问题. 本研究旨在探究不同气候带(分为暖温带和寒温带)和入侵程度(分为低度入侵和高度入侵)的入侵树种火炬树叶功能性状及其变异性的差异. 火炬树的入侵程度对其叶功能性状无显著影响. 但是, 高度入侵的火炬树叶的叶绿素含量和叶氮含量的变异性分别比低度入侵的火炬树高约 66.023% 和 68.615%. 暖温带火炬树叶的叶绿素含量和叶氮含量分别比寒温带火炬树的高约 18.432 %和 16.337%. 此外, 暖温带火炬树的比叶面积的变异性比寒温带火炬树的高约 59.802%. 总之, 火炬树叶的叶绿素含量和叶氮含量以及比叶面积及其变异性可能是火炬树在不同气候带成功入侵的关键生态策略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. POWELL K I, CHASE J M, KNIGHT T M. Invasive plants have scale-dependent effects on diversity by altering species-area relationships [J]. Science, 2013, 339(6117): 316–318. DOI: https://doi.org/10.1126/science.1226817.

    Article  Google Scholar 

  2. CONTI L, BLOCK S, PAREPA M, MÜNKEMÜLLER T, THUILLER W, ACOSTA A T R, VAN KLEUNEN M, DULLINGER S, ESSL F, DULLINGER I, MOSER D, KLONNER G, BOSSDORF O, CARBONI M. Functional trait differences and trait plasticity mediate biotic resistance to potential plant invaders [J]. Journal of Ecology, 2018, 106(4): 1607–1620. DOI: https://doi.org/10.1111/1365-2745.12928.

    Article  Google Scholar 

  3. TECCO P A, URCELAY C, DÍAZ S, CABIDO M, PÉREZ-HARGUINDEGUY N. Contrasting functional trait syndromes underlay woody alien success in the same ecosystem [J]. Austral Ecology, 2013, 38(4): 443–451. DOI: https://doi.org/10.1111/j.1442-9993.2012.02428.x.

    Article  Google Scholar 

  4. DYDERSKI M K, JAGODZIŃSKI A M. Functional traits of acquisitive invasive woody species differ from conservative invasive and native species [J]. NeoBiota, 2019, 41: 91–113. DOI: https://doi.org/10.3897/neobiota.41.31908.

    Article  Google Scholar 

  5. WRIGHT I J, ACKERLY D D, BONGERS F, HARMS K E, IBARRA-MANRIQUEZ G, MARTINEZ-RAMOS M, MAZER S J, MULLER-LANDAU H C, PAZ H, PITMAN N C A, POORTER L, SILMAN M R, VRIESENDORP C F, WEBB C O, WESTOBY M, WRIGHT S J. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests [J]. Annals of Botany 2007, 99(5): 1003–1015. DOI: https://doi.org/10.1093/aob/mcl066.

    Article  Google Scholar 

  6. SUDING K N, LAVOREL S, CHAPIN F S, CORNELISSEN J H C, DÍAZ S, GARNIER E, GOLDBERG D, HOOPER D U, JACKSON S T, NAVAS M L. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants [J]. Global Change Biology 2008, 14(5): 1125–1140. DOI: https://doi.org/10.1111/j.1365-2486.2008.01557.x.

    Article  Google Scholar 

  7. LIU F D, YANG W J, WANG Z S, XU Z, LIU H, ZHANG M, LIU Y H, AN S Q, SUN S C. Plant size effects on the relationships among specific leaf area, leaf nutrient content, and photosynthetic capacity in tropical woody species [J]. Acta Oecologica-International Journal of Ecology, 2010, 36(2): 149–159. DOI: https://doi.org/10.1016/j.actao.2009.11.004.

    Article  Google Scholar 

  8. MENG F Q, CAO R, YANG D M, NIKLAS K J, SUN S C. Trade-offs between light interception and leaf water shedding: A comparison of shade- and sun-adapted species in a subtropical rainforest [J]. Oecologia, 2014, 174(1): 13–22. DOI: https://doi.org/10.1007/s00442-013-2746-0.

    Article  Google Scholar 

  9. CLELAND E E. Trait divergence and the ecosystem impacts of invading species [J]. New Phytologist, 2011, 189(3): 649–652. DOI: https://doi.org/10.1111/j.1469-8137.2010.03607.x.

    Article  Google Scholar 

  10. WRIGHT I J, REICH P B, WESTOBY M, ACKERLY D D, BARUCH Z, BONGERS F, CAVENDER-BARES J, CHAPIN F S, CORNELISSEN J H C, DIEMER M, FLEXAS J, GARNIER E, GROOM P K, GULIAS J, HIKOSAKA K, LAMONT B B, LEE T, LEE W, LUSK C, MIDGLEY J J, NAVAS M L, NIINEMETS Ü, OLEKSYN J, OSADA N, POORTER H, POOT P, PRIOR L, PYANKOV V I, ROUMET C, THOMAS S C, TJOELKER M G, VENEKLAAS E, VILLAR R. The worldwide leaf economics spectrum [J]. Nature, 2004, 428(6985): 821–827. DOI: https://doi.org/10.1038/nature02403.

    Article  Google Scholar 

  11. POORTER H, NIINEMETS U, POORTER L, WRIGHT I J, VILLAR R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis [J]. New Phytologist, 2009, 182(3): 565–588. DOI: https://doi.org/10.1111/j.1469-8137.2009.02830.x.

    Article  Google Scholar 

  12. MÁJEKOVÁ M, DE BELLO F, DOLEŽ J, LEPŠ J. Plant functional traits as determinants of population stability [J]. Ecology 2014, 95(9): 2369–2374. DOI: https://doi.org/10.1890/13-1880.1.

    Article  Google Scholar 

  13. PIERCE S, BRUSA G, VAGGE I, CERABOLINI B E L. Allocating CSR plant functional types: The use of leaf economics and size traits to classify woody and herbaceous vascular plants [J]. Functional Ecology, 2013, 27(4): 1002–1010.

    Article  Google Scholar 

  14. WANG C Y, ZHOU J W, LIU J, JIANG K. Differences in functional traits between invasive and native Amaranthus species under different forms of N deposition [J]. Science of Nature, 2017, 104(7, 8): 59. DOI: https://doi.org/10.1007/s00114-017-1482-4.

    Article  Google Scholar 

  15. WANG C Y, JIANG K, LIU J, ZHOU J W, WU B D. Moderate and heavy Solidago canadensis L. invasion are associated with decreased taxonomic diversity but increased functional diversity of plant communities in East China [J]. Ecological Engineering, 2018, 112(3): 55–64. DOI: https://doi.org/10.1016/j.ecoleng.2017.12.025.

    Article  Google Scholar 

  16. WANG C Y, WU B D, JIANG K, ZHOU J W. Differences in functional traits between invasive and native Amaranthus species under simulated acid deposition with a gradient of pH levels [J]. Acta Oecologica, 2018, 89: 32–37. DOI: https://doi.org/10.1016/j.actao.2018.04.006.

    Article  Google Scholar 

  17. WANG C Y, JIANG K, ZHOU J W, WU B D. Solidago canadensis invasion affects soil N-fixing bacterial communities in heterogeneous landscapes in urban ecosystems in East China [J]. Science of the Total Environment, 2018, 631–632: 702–713. DOI: https://doi.org/10.1016/j.scitotenv.2018.03.061.

    Article  Google Scholar 

  18. THEOHARIDES K A, DUKES J S. Plant invasion across space and time, factors affecting nonindigenous species success during four stages of invasion [J]. New Phytologist 176(2): 256–273. DOI: https://doi.org/10.1111/j.1469-8137.2007.02207.x.

    Article  Google Scholar 

  19. RAI P K. Paradigm of plant invasion: multifaceted review on sustainable management [J]. Environmental Monitoring and Assessment, 2015, 187(12): 759. DOI: https://doi.org/10.1007/s10661-015-4934-3.

    Article  Google Scholar 

  20. WANG C Y, ZHOU J W, LIU J, XIAO H G, WANG L. Functional traits and reproductive allocation strategy of Conyza canadensis as they vary by invasion degree along a latitude gradient [J]. Polish Journal of Environmental Studies 2017, 26(3): 1289–1297. DOI: https://doi.org/10.15244/pjoes/66175.

    Article  Google Scholar 

  21. YAN X L, LIU Q R, SHOU H Y, ZENG X F, ZHANG Y, CHEN L, LIU Y, MA HY, QI S Y, MA J S. The categorization and analysis on the geographic distribution patterns of Chinese alien invasive plants [J]. Biodiversity Science, 2014, 5: 667–676. DOI: https://doi.org/10.3724/SP.J.1003.2014.14069. (in Chinese)

    Google Scholar 

  22. WANG C Y, JIANG K, ZHOU J W, LIU J. Allelopathic suppression by Conyza canadensis depends on the interaction between latitude and the degree of the plant’s invasion [J]. Acta Botanica Brasilica, 2017, 31(2): 212–219. DOI: 0102-33062017abb0045.

    Article  Google Scholar 

  23. REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001–11006. DOI: https://doi.org/10.1073/pnas.0403588101.

    Article  Google Scholar 

  24. SUN X Y, LU Z H, LI P H, JIANG Q S, LANG Z. Ecological adaptation of Eupatorium adenophorum populations to light intensity [J]. Journal of Forestry Research, 2006, 17(2): 116–120. DOI: https://doi.org/10.1007/s11676-006-0027-z.

    Article  Google Scholar 

  25. MCCULLEY R L, BURKE I C, LAUENROTH W K. Conservation of nitrogen increases with precipitation across a major grassland gradient in the Central Great Plainsof North America [J]. Oecologia, 2009, 159(3): 571–581. DOI: https://doi.org/10.1007/s00442-008-1229-1.

    Article  Google Scholar 

  26. WANG C Y, ZHOU J W, LIU J, WANG L, XIAO H G. Reproductive allocation strategy of two herbaceous invasive plants across different cover classes [J]. Polish Journal of Environmental Studies, 2017, 26(1): 355–364. DOI: https://doi.org/10.15244/pjoes/64240.

    Article  Google Scholar 

  27. VAN KLEUNEN M, WEBER E, FISCHER M. A meta-analysis of trait differences between invasive and non-invasive plant species [J]. Ecology Letters, 2010, 13(2): 235–245. DOI: https://doi.org/10.1111/j.1461-0248.2009.01418.x.

    Article  Google Scholar 

  28. CHEN L Y, TIU C J, PENG S L, SIEMANN E. Conspecific plasticity and invasion: Invasive populations of Chinese tallow (Triadica sebifera) have performance advantage over native populations only in low soil salinity [J]. PLoS One, 2013, 8: e74961. DOI: https://doi.org/10.1371/journal.pone.0074961.

    Article  Google Scholar 

  29. GRIFFITH A B, ANDONIAN K, WEISS C P, LOIK M E. Variation in phenotypic plasticity for native and invasive populations of Bromus tectorum [J]. Biological Invasions, 2014, 16(12): 2627–2638. DOI: https://doi.org/10.1007/s10530-014-0692-3.

    Article  Google Scholar 

  30. HULME P. Phenotypic plasticity and plant invasions: Is it all Jack? [J]. Functional Ecology, 2008, 22(1): 3–7. DOI: https://doi.org/10.1111/j.1365-2435.2007.01369.x.

    Article  Google Scholar 

  31. WANG C Y, LIU J, XIAO H G, ZHOU J W, DU D L. Floristic characteristics of alien invasive seed plant species in China [J]. Anais da Academia Brasileira de Ciências, 2016, 88(3): 1791–1797. DOI: https://doi.org/10.1590/0001-3765201620150687.

    Article  Google Scholar 

  32. WANG G, JIANG G, YU S, LI Y, LIU H. Invasion possibility and potential effects of Rhus typhina on Beijing Municipality [J]. Journal of Integrative Plant Biology, 2008, 50(5): 522–530. DOI: https://doi.org/10.1111/j.1744-7909.2008.00660.x.

    Article  Google Scholar 

  33. YUAN Y F, GUO W H, DING W J, DU N, LUO Y J, LIU J, XU F, WANG R Q. Competitive interaction between the exotic plant Rhus typhina L. and the native tree Quercus acutissima Carr. in Northern China under different soil N:P ratios [J]. Plant and Soil, 2013, 372(1, 2): 389–400. DOI: https://doi.org/10.1007/s11104-013-1748-3.

    Article  Google Scholar 

  34. ZHANG Z J, JIANG C D, ZHANG J Z, ZHANG H J, SHI L. Ecophysiological evaluation of the potential invasiveness of Rhus typhina in its non-native habitats [J]. Tree Physiology, 2009, 29(11): 1307. DOI: https://doi.org/10.1093/treephys/tpp065.

    Article  Google Scholar 

  35. WANG C Y, ZHOU J W, JIANG K, LIU J. Differences in leaf functional traits and allelopathic effects on seed germination and growth of Lactuca sativa between red and green leaves of Rhus typhina [J]. South African Journal of Botany, 2017, 111: 17–22. DOI: https://doi.org/10.1016/j.sajb.2017.03.019.

    Article  Google Scholar 

  36. FANG W S, MA C G. Jinzhou Yearbook [M]. Shenyang: Liaoning Nationality Publishing House, 2015: 59. (in Chinese)

    Google Scholar 

  37. GONG X Q. Jinan Yearbook. [M]. Jinan: Jinan Publishing House, 2016: 34. (in Chinese)

    Google Scholar 

  38. ZHANG W L, XU A G, ZHANG R L, JI H J. Review of soil classification and revision of China soil classification system [J]. Scientia Agricultura Sinica, 2014, 47: 3214–3230. (in Chinese)

    Google Scholar 

  39. JIANG K, WU B D, WANG C Y, RAN Q. Ecotoxicological effects of metals with different concentrations and types on the morphological and physiological performance of wheat [J]. Ecotoxicology and Environmental Safety, 2019, 167: 345–353. DOI: https://doi.org/10.1016/j.ecoenv.2018.10.048.

    Article  Google Scholar 

  40. JEONG N, MOON J K, KIM H S, KIM C G, JEONG S C. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean [J]. Theoretical and Applied Genetics, 2011, 122(5): 865–874. DOI: https://doi.org/10.1007/s00122-010-1492-5.

    Article  Google Scholar 

  41. WANG Z, ZHANG L. Leaf shape alters the coefficients of leaf area estimation models for Saussurea stoliczkai in central Tibet [J]. Photosynthetica, 2012, 50(3): 337–342. DOI: https://doi.org/10.1007/s11099-012-0039-1.

    Article  Google Scholar 

  42. FORKMAN J. Estimator and tests for common coefficients of variation in normal distributions [J]. Communications in Statistics-Theory and Methods, 2009, 38(2): 233–251. DOI: https://doi.org/10.1080/03610920802187448.

    Article  MathSciNet  MATH  Google Scholar 

  43. KRISHNAMOORTHY K, LEE M. Improved tests for the equality of normal coefficients of variation [J]. Computational Statistics, 2014, 29(1, 2): 215–232. DOI: https://doi.org/10.1007/s00180-013-0445-2.

    Article  MathSciNet  MATH  Google Scholar 

  44. OLEJNIK S F, ALGINA J. Generalized eta and omega squared statistics: Measures of effect size for some common research designs [J]. Psychological Methods, 2003, 8(4): 434–447. DOI: https://doi.org/10.1037/1082-989X.8.4.434.

    Article  Google Scholar 

  45. BAKEMAN R. Recommended effect size statistics for repeated measures designs [J]. Behavior Research Methods, 2005, 37(3): 379–384. DOI: https://doi.org/10.3758/BF03192707.

    Article  Google Scholar 

  46. REEF R, LOVELOCK C E. Historical analysis of mangrove leaf traits throughout the 19th and 20th centuries reveals differential responses to increases in atmospheric CO2 [J]. Global Ecology and Biogeography, 2014, 23(11): 1209–1214. DOI: https://doi.org/10.1111/geb.12211.

    Article  Google Scholar 

  47. WRIGHT I J, REICH P B, CORNELISSEN J H C, FALSTER D S, GROOM P K, HIKOSAKA K, LEE W, LUSK C H, NIINEMETS Ü, OLEKSYN J, OSADA N, POORTER H, WARTON D I, WESTOBY M. Modulation of leaf economic traits and trait relationships by climate [J]. Global Ecology and Biogeography, 2005, 14(5): 411–421. DOI: https://doi.org/10.2307/3697523.

    Article  Google Scholar 

  48. DE FRENNE P, GRAAE B J, RODRÍGUEZ-SÁNCHEZ F, KOLB A, CHABRERIE O, DECOCQ G, DE KORT H, DE SCHRIJVER A, DIEKMANN M, ERIKSSON O, GRUWEZ R, HERMY M, LENOIR J, PLUE J, COOMES D A, VERHEYEN K. Latitudinal gradients as natural laboratories to infer species’ responses to temperature [J]. Journal of Ecology, 2013, 101(3): 784–795. DOI: https://doi.org/10.1111/1365-2745.12074.

    Article  Google Scholar 

  49. XIAO H G, WANG C Y, LIU J, WANG L, DU D L. Insights into the differences in leaf functional traits of heterophyllous Syringa oblata under different light intensities [J]. Journal of Forestry Research, 2015, 26(3): 613–621. DOI: https://doi.org/10.1007/s11676-015-0100-6.

    Article  Google Scholar 

  50. WANG C Y, LIU J, XIAO H G, ZHOU J W. Differences in leaf functional traits between Rhus typhina and native species [J]. CLEAN-Soil, Air, Water, 2016, 44(11): 1591–1597. DOI: https://doi.org/10.1002/clen.201600144.

    Article  Google Scholar 

  51. HULSHOF C M, VIOLLE C, SPASOJEVIC M J, MCGILL B, DAMSCHEN E, HARRISON S, ENQUIST B J. Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude [J]. Journal of Vegetation Science, 2013, 24(5): 921–931. DOI: https://doi.org/10.1111/jvs.12041.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-yan Wang  (王从彦).

Additional information

Foundation item: Project(31300343) supported by the National Natural Science Foundation of China; Project(Y20160023) supported by Open Science Research Fund of State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, China; Project supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China; Project supported by Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Wang, S., Wu, Bd. et al. Variability of leaf functional traits of invasive tree Rhus typhina L. in North China. J. Cent. South Univ. 27, 155–163 (2020). https://doi.org/10.1007/s11771-020-4285-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4285-2

Key words

关键词

Navigation