Skip to main content
Log in

Experimental investigation of subsurface damage depth of lapped optics by fluorescent method

荧光法测量光学元件亚表面损伤深度的实验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Subsurface defects were fluorescently tagged with nanoscale quantum dots and scanned layer by layer using confocal fluorescence microscopy to obtain images at various depths. Subsurface damage depths of fused silica optics were characterized quantitatively by changes in the fluorescence intensity of feature points. The fluorescence intensity vs scan depth revealed that the maximum fluorescence intensity decreases sharply when the scan depth exceeds a critical value. The subsurface damage depth could be determined by the actual embedded depth of the quantum dots. Taper polishing and magnetorheological finishing were performed under the same conditions to verify the effectiveness of the nondestructive fluorescence method. The results indicated that the quantum dots effectively tagged subsurface defects of fused-silica optics, and that the nondestructive detection method could effectively evaluate subsurface damage depths.

摘要

本文利用纳米级荧光量子点对光学元件亚表面缺陷进行标记, 采用共聚焦荧光显微镜对聚焦表 面进行逐层扫描, 得到被测样品不同深度处的切片图像。通过特征点荧光强度的变化, 定量表征了熔 石英光学元件的亚表面损伤深度。结果表明, 当扫描深度超过临界值时, 最大荧光强度急剧下降, 光 学元件亚表面损伤深度可以通过量子点实际嵌入深度确定。考虑到破坏性检测方法能有效验证的无损 检测方法, 角度抛光、磁流变抛光实验在相同的条件下进行。结果表明, 纳米级量子点对光学元件的 表面缺陷具有良好的标注能力。此外, 无损检测方法可以有效地评估熔石英元件的亚表面损伤深度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI Hao, YU Tian, ZHU Li, WANG Wan. Evaluation of grinding-induced subsurface damage in optical glass BK7 [J]. Journal of Materials Processing Technology, 2016, 229: 785–794.

    Article  Google Scholar 

  2. BIFANO T G, FAWCETT S C. Specific grinding energy as an in-process control variable for ductile-regime grinding [J]. Precision Engineering–Journal of the American Society for Precision Engineering, 1991, 13: 256–262.

    Google Scholar 

  3. BUIJS M, KORPELVANHOUTEN K. 3-body abrasion of brittle materials as studied by lapping [J]. Wear, 1993, 166: 237–245.

    Article  Google Scholar 

  4. LI Sheng, WANG Zhuo, WU Yu. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes [J]. Journal of Materials Processing Technology, 2008, 205: 34–41.

    Article  Google Scholar 

  5. ZHANG C, RENTSCH R, BRINKSMEIER E. Advances in micro ultrasonic assisted lapping of microstructures in hard-brittle materials: A brief review and outlook [J]. International Journal of Machine Tools & Manufacture, 2005, 45: 881–890.

    Article  Google Scholar 

  6. LI Ya, WU Yong, WANG Jian, GUO Yin, XU Qiao. Tentative investigation towards precision polishing of optical components with ultrasonically vibrating boundabrasive pellets [J]. Optics Express, 2012, 20: 568–575.

    Article  Google Scholar 

  7. LI Ya, ZHENG Nan, LI Hai, HOU Jing, LEI Xiang, CHEN Xian, YUAN Zhi, GUO Zhao, WANG Jian, GUO Yin, XU Qiao. Morphology and distribution of subsurface damage in optical fused silica parts: Bound-abrasive grinding [J]. Appl Surf Sci, 2011, 257: 2066–2073.

    Article  Google Scholar 

  8. WILLIAMS W B, MULLANY B A, PARKER W C, MOYER P J, RANDLES M H. Using quantum dots to tag subsurface damage in lapped and polished glass samples [J]. Applied Optics, 2009, 48: 5155–5163.

    Article  Google Scholar 

  9. BIFANO T G, DEPIERO D K, GOLINI D. Chemomechanical effects in ductile-regime machining of glass [J]. Precision Engineering–Journal of the American Society for Precision Engineering, 1993, 15: 238–247.

    Google Scholar 

  10. BERCEGOL H, GRUA P, HEBERT D, MORREEUW J P. Progress in the understanding of fracture related laser damage of fused silica [C]//Proceedings of SPIE-The International for Optical Engineering. Boulder, CO, USA, 2007: 672003.

    Google Scholar 

  11. WANG Chu, WANG Hong, SHEN Lu, HOU Jing, XU Qiao, WANG Jian, CHEN Xian. Numerical simulation and experimental study on crack self-healing in BK7 glass [J]. Ceramics International, 2018, 44(2): 1850–1858.

    Article  Google Scholar 

  12. MILLER P E, BUDE J D, SURATWALA T I, SHEN N, LAURANCE T A, STEELE W A, MENAPACE J, FEIT M D, WONG L L. Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces [J]. Opt Lett, 2010, 35: 2702–2704.

    Article  Google Scholar 

  13. DONG Zhi, CHENG Hao, XU Ye, TAM H Y. Subsurface damage of fused silica lapped by fixed-abrasive diamond pellets [J]. Applied Optics, 2014, 53: 5841–5849.

    Article  Google Scholar 

  14. BIAN Yan, ZHAI Wen, CHENG Yuan, ZHU Bao. Scratching by pad asperities in copper electrochemical-mechanical polishing [J]. Journal of Central South University, 2014, 21(11): 4157–4162.

    Article  Google Scholar 

  15. NEAUPORT J, AMBARD C, CORMONT P, DARBOIS N, DESTRIBATS J, LUITOT C, RONDEAU O. Subsurface damage measurement of ground fused silica parts by hf etching techniques [J]. Optics Express, 2009, 17: 20448–20456.

    Article  Google Scholar 

  16. HED P P, EDWARDS D F. Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage [J]. Applied Optics, 1987, 26: 4677–4680.

    Article  Google Scholar 

  17. MENAPACE J A, DAVIS P J, STEELE W A, WONG L L, SURATWALA T I, MILLER P E. MRF applications: Measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique [R]. Livermore, CA: Lawrence Livermore National Laboratory (LLNL), 2005.

    Google Scholar 

  18. ZHOU Y Y, FUNKENBUSCH P D, QUESNEL D J, GOLINI D, LINDQUIST A. Effect of etching and imaging mode on the measurement of subsurface damage in microground optical-glasses [J]. J Am Ceram Soc, 1994, 77: 3277–3280.

    Article  Google Scholar 

  19. MEEDER M, MAURET T, BOOIJ S M, BRAAT J J M, FAEHNLE O W. In Optimization of polishing processes by using itirm for in situ monitoring of surface quality [C]//Proceedings of SPIE-Optical Manufacturing and Testing V. Bellingham, WA, 2003, 5180: 40–46.

    Google Scholar 

  20. ELLINGSON W A, TODD J A, SUN J. Optical method and apparatus for detection of defects and microstructural changes in ceramics and ceramic coatings [P]. Google Patents: 2001.

    Google Scholar 

  21. NEAUPORT J, CORMONT P, LEGROS P, AMBARD C, DESTRIBATS J. Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy [J]. Optics Express, 2009, 17: 3543–3554.

    Article  Google Scholar 

  22. CATRIN R, NEAUPORT J, LEGROS P, TAROUX D, CORBINEAU T, CORMONT P, MAUNIER C. Using sted and elsm confocal microscopy for a better knowledge of fused silica polished glass interface [J]. Optics Express, 2013, 21: 29769–29779.

    Article  Google Scholar 

  23. WANG Zhuo, WANG Lin, YANG Jun, PENG Wen, HU Hao. Detection of subsurface trace impurity in polished fused silica with biological method [J]. Optics Express, 2014, 22: 21292–21301.

    Article  Google Scholar 

  24. WILLIAMS W, MULLANY B, PARKER W, MOYER P, RANDLES M. Using quantum dots to evaluate subsurface damage depths and formation mechanisms in glass [J]. CIRP Annals–Manufacturing Technology, 2010, 59: 569–572.

    Article  Google Scholar 

  25. ZAN Feng, DONG Chao, LIU Heng, REN Ji. Experimental studies on blinking behavior of single Inp/Zns quantum dots: Effects of synthetic conditions and uv irradiation [J]. The Journal of Physical Chemistry C, 2012, 116: 3944–3950.

    Article  Google Scholar 

  26. LIN Yi, XIE Hai, ZHANG Zhi, TIAN Zhi, PANG Dai. Fluorescent semiconductor quantum dots for biolabeling [J]. Progress in Chemistry 2007, 19: 1861–1865.

    Google Scholar 

  27. HOCKEN R J, CHAKRABORTY N, BROWN C. Optical metrology of surfaces [J]. CIRP Annals-Manufacturing Technology, 2005, 54: 169–183.

    Article  Google Scholar 

  28. RÜTTINGER S, BUSCHMANN V, KRÄMER B, ERDMANN R, MACDONALD R, KOBERLING F. Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy [J]. Journal of Microscopy, 2008, 232: 343–352.

    Article  MathSciNet  Google Scholar 

  29. RÜTTINGER S, BUSCHMANN V, KRÄMER B, ERDMANN R, MACDONALD R, KOBERLING F. In Determination of the confocal volume for quantitative fluorescence correlation spectroscopy [C]//Confocal, Multiphoton, and Nonlinear Microscopic Imaging III. Munich: Optical Society of America, 2007: 6612–6630.

    Google Scholar 

  30. LAMBROPOULOS J. From abrasive size to subsurface damage in grinding [C]//Optical Fabrication and Testing. Québec City: Optical Society of America, 2000: 17–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-xiang Wang  (王洪祥).

Additional information

Foundation item: Project(JCKY2016212A506-0503) supported by the Science Challenge Project of China; Project(51475106) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hx., Hou, J., Wang, Jh. et al. Experimental investigation of subsurface damage depth of lapped optics by fluorescent method. J. Cent. South Univ. 25, 1678–1689 (2018). https://doi.org/10.1007/s11771-018-3859-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3859-8

Key words

关键词

Navigation