Skip to main content
Log in

Preparation of α-calcium sulfate hemihydrate whiskers with high aspect ratios in presence of a minor amount of CuCl2·2H2O

少量CuCl2·2H2O 作用下制备高长径比α-半水硫酸钙晶须

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to produce α-calcium sulfate hemihydrate (α-CaSO4·0.5H2O) whiskers with high aspect ratios, a minor amount of CuCl2·2H2O was used as the modifying agent in the process of hydrothermal treatment of calcium sulfate dihydrate (CaSO4·2H2O) precursor. The presence of 2.60×10-3 mol/L CuCl2·2H2O resulted in the increase of the aspect ratios of α-CaSO4·0.5H2O whiskers from 81 to 253. The preferential adsorption of Cu2+ on the negative {110} and {100} facets of α-CaSO4·0.5H2O crystal structures was confirmed by EDS and XPS. And ATR-FTIR demonstrated the ligand adsorption of Cu2+ on the surface of α-CaSO4·0.5H2O whiskers. The experimental results reveal that the whiskers with high aspect ratios are attributed to the adsorption of Cu2+, which promotes the 1-D growth of α-CaSO4·0.5H2O whiskers along the c axis.

摘要

为了制备高长径比的α-半水硫酸钙(α-CaSO4·0.5H2O)晶须,在以二水硫酸钙(CaSO4·2H2O) 前驱体为原料的水热反应过程中加入CuCl2·2H2O 作为媒晶剂。当反应体系中加入2.60×10-3 mol/L 的 CuCl2·2H2O 时可以使产物α-半水硫酸钙晶须的长径比由81 增加到253。EDS 和XPS 检测结果表明, CuCl2·2H2O 能够显著增加α-半水硫酸钙晶须的长径比主要是因为Cu2+优先吸附于α-CaSO4·0.5H2O 晶 体带负电的{110}和{100}面,从而阻碍了侧面的生长,最终导致晶体长径比的增加。ATR-FTIR 进一 步证实了Cu2+主要通过配位吸附的形式与α-CaSO4·0.5H2O 晶体表面进行作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CAO Yan, GALOPPINI E, REYES P I, DUAN Zi-qing, LU Yi-cheng. Morphology effects on the biofunctionalization of nanostructured ZnO [J]. Langmuir, 2012, 28(21): 7947–7951.

    Article  Google Scholar 

  2. SPANO F, MASSARO A, BLASI L, MALERBA M, CINGOLANI R, ATHANASSIOU A. In situ formation and size control of gold nanoparticles into chitosan for nanocomposite surfaces with tailored wettability [J]. Langmuir, 2012, 28(8): 3911–3917.

    Article  Google Scholar 

  3. TSAGGEOS K, MASIERA N, NIWICKA A, DOKOROU V, SISKOS M G, SKOULIKA S, MICHAELIDES A. Crystal structure, thermal behavior, and photochemical reactivity of a series of co-crystals of trans-1, 2-bis (4-pyridyl) ethylene with dicarboxylic acids [J]. Crystal Growth and Design, 2012, 12(5): 2187–2194.

    Article  Google Scholar 

  4. LIU Cheng-jun, ZHAO Qing, WANG Ye-guang, SHI Pei-yang, JIANG Mao-fa. Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum [J]. Applied Surface Science, 2015, 360: 263–269.

    Article  Google Scholar 

  5. WANG Li, MA Ji-hong, GUO Zeng-wei, DONG Bao-sheng, WANG Gao-min. Study on the preparation and morphology of calcium sulfate whisker by hydrothermal synthesis method [J]. Materials Science and Technology, 2006, 14(6): 626–629. (in Chinese)

    Google Scholar 

  6. MIAO Miao, FENG Xin, WANG Gang-ling, CAO Shao-mei, SHI Wen, SHI Li-yi. Direct transformation of FGD gypsum to calcium sulfate hemihydrate whiskers: Preparation, simulations, and process analysis [J]. Particuology, 2015, 19(2): 53–59.

    Article  Google Scholar 

  7. WANG Xiao, YANG Liu-shuan, ZHU Xin-feng, YANG Jia-kuan. Preparation of calcium sulfate whiskers from FGD gypsum via hydrothermal crystallization in the H2SO4-NaCl-H2O system [J]. Particuology, 2014, 17: 42–48.

    Article  Google Scholar 

  8. LIU Ling, YIN Ning, KANG Mao-qing, WANG Xin-kui. Study on FeSO4 whisker reinforcing and toughening mechanisms for polyurethane elastomer [J]. Acta Polymerica Sinica, 2001, 80(2): 245–249. (in Chinese)

    Google Scholar 

  9. HU Xiao-lan, YU Mou-fa, Study of calcium sulfate whiskers modified bismaleimide resin by friction and wear properties [J]. Acta Polymerica Sinica, 2006, 6(5): 686–691. (in Chinese)

    Article  Google Scholar 

  10. LIU Jin-yan, REN Li, WEI Qiang, WU Jian-ling, LIU Sa, WANG Ying-jun, LI Guo-yuan. Microstructure and properties of polycaprolactone/calcium sulfate particle and whisker composites [J]. Polymer Composites, 2012, 33(4): 501–508.

    Article  Google Scholar 

  11. WANG Jin-cheng, TANG Li-juan, WU Ding, GUO Xi, HAO Wen-li. Application of modified calcium sulfate whisker in methyl vinyl silicone rubber composites [J]. Polymers & Polymer Composites, 2012, 20(5): 453–462.

    Article  Google Scholar 

  12. WANG Jin-cheng, XUE Ye, CANG Shi-jiao. Studies on the application properties of calcium sulfate whisker in silicone rubber composites [J]. Journal of Elastomers & Plastics, 2012, 44(1): 55–66.

    Article  Google Scholar 

  13. FENG Xin, ZHANG Ying, WANG Gang-ling, MIAO Miao, SHI Li-yi. Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking [J]. Powder Technology, 2015, 271: 1–6.

    Article  Google Scholar 

  14. BACON D J, BARNETT D M, SCATTERGOOD R O. Anisotropic continuum theory of lattice defects [J]. Progress in Materials Science, 1978, 23: 51–262.

    Article  Google Scholar 

  15. GURTIN M E, MURDOCH A L. A continuum theory of elastic material surfaces [J]. Archive for Rational Mechanics and Analysis, 1975, 57(4): 291–323.

    Article  MathSciNet  MATH  Google Scholar 

  16. WANG Xiao, JIN Biao, YANG Liu-shuan, ZHU Xin-feng. Effect of CuCl2 on hydrothermal crystallization of calcium sulfate whiskers prepared from FGD gypsum [J]. Crystal Research & Technology, 2015, 50(8): 633–640.

    Article  Google Scholar 

  17. MAO Xiu-long, SONG Xin-fu, LU Gui-min, SUN Yu-zhu, XU Yan-xia, YU Jian-guo. Effects of metal ions on crystal morphology and size of calcium sulfate whiskers in aqueous HCl solutions [J]. Industrial & Engineering Chemistry Research, 2014, 53(45): 17625–17635.

    Article  Google Scholar 

  18. HOU Si-chao, XIANG Lan. Influence of activity of CaSO4·2H2O on hydrothermal formation of FeSO4·0.5H2O whiskers [J]. Journal of Nanomaterials, 2013(2013): Article ID 237828.

  19. HOU Si-chao, WANG Jing, WANG Xiao-xue, CHEN Hao-yuan, XIANG Lan. Effect of Mg2+ on hydrothermal formation of a-FeSO4·0.5H2O whiskers with high aspect ratios [J]. Langmuir, 2014, 30(32): 9804–9810.

    Article  Google Scholar 

  20. KONG Bao, GUAN Bao-hong, YATES M Z, WU Zhong-biao. Control of a-calcium sulfate hemihydrate morphology using reverse microemulsions [J]. Langmuir, 2012, 28(40): 14137–14142.

    Article  Google Scholar 

  21. SHEN Zhuo-xian, GUAN Bao-hong, FU Hai-lan, YANG Liu-chun. Effect of potassium sodium tartrate and sodium citrate on the preparation of a-calcium sulfate hemihydrate from flue gas desulfurization gypsum in a concentrated electrolyte solution [J]. Journal of the American Ceramic Society, 2009, 92(12): 2894–2899.

    Article  Google Scholar 

  22. PAN Zong-you, YANG Guang-yong, LOU Yi , XUE En-xing, XU Hua-zi, MIAO Xi-geng, LIU Jian-li, HU Chun-feng, HUANG Qing. Morphology control and self-setting modification of a-calcium sulfate hemihydrate bone cement by addition of ethanol [J]. International Journal of Applied Ceramic Technology, 2013, 10(s1): E219–E225.

    Article  Google Scholar 

  23. SIRIWARDANE R V, JR J A P, FISHER E P, SHEN M S, MILTZ A L. Decomposition of the sulfates of copper, iron (II), iron (III), nickel, and zinc: XPS, SEM, DRIFTS, XRD, and TGA study [J]. Applied Surface Science, 1999, 152(s3, 4): 219–236.

    Article  Google Scholar 

  24. HAYEZ V, FRANQUET A, HUBIN A, TERRYN H. XPS study of the atmospheric corrosion of copper alloys of archaeological interest [J]. Surface and Interface Analysis, 2004, 36(8): 876–879.

    Article  Google Scholar 

  25. COMYN J. Practical surface analysis—by Auger and X-ray photoelectron spectroscopy [J]. International Journal of Adhesion and Adhesives, 1984, 4(3): 142.

    Article  Google Scholar 

  26. WEAVER J H, CHAI Y, KROLL G H, JIN C, OHNO T R, HAUFLER R E, GUO T, ALFORD J M, CONCEICAO J, CHIBANTE L P F. XPS probes of carbon-caged metals [J]. Chemical Physics Letters, 1992, 190(5): 460–464.

    Article  Google Scholar 

  27. BALLIRANO P, MARAS A, MELONI S, CAMINITI R. The monoclinic I2 structure of bassanite, calcium sulphate hemihydrate (FeSO4·0.5H2O) [J]. European Journal of Mineralogy, 2001, 13(5): 985–993.

    Article  Google Scholar 

  28. BEZOU C, NONAT A, MUTIN J C, CHRISTENSEN A N, LEHMANN M S. Investigation of the crystal structure of α-CaSO4, CaSO4·0.5H2O, and CaSO4·0.6H2O by powder diffraction methods [J]. Journal of Solid State Chemistry, 1995, 117(1): 165–176.

    Article  Google Scholar 

  29. FREYER D, VOIGT W. Crystallization and phase stability of FeSO4 and FeSO4–based salts [J]. Monatshefte Fuer Chemie/chemical Monthly, 2003, 134(5): 693–719.

    Article  Google Scholar 

  30. GUAN Qing-jun, TANG Hong-hu, SUN Wei, HU Yue-hua, YIN Zhi-gang. Insight into influence of glycerol on preparing a-FeSO4·½H2O from flue gas desulfurization gypsum in glycerol-water solutions with succinic acid and NaCl [J]. Industrial & Engineering Chemistry Research, 2017, 56: 9831–9838.

    Article  Google Scholar 

  31. WANG Yu, PENG Ying-lin, ZHENG Ya-jie. Recovery of magnetite from FeSO4·7H2O waste slag by co-precipitation method with calcium hydroxide as precipitant [J]. Journal of Central South University, 2017, 24(1): 62–70.

    Article  Google Scholar 

  32. HUG S J. In situ Fourier transform infrared measurements of sulfate adsorption on hematite in aqueous solutions [J]. Journal of Colloid and Interface Science, 1997, 188(2): 415–422.

    Article  Google Scholar 

  33. PEAK D, FORD R G, SPARKS D L. An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite [J]. Journal of Colloid and Interface Science, 1999, 218(1): 289–299.

    Article  Google Scholar 

  34. NAKAMOTO K. Infrared and Raman spectra of inorganic and coordination compounds [M]. Hoboken, New Jersey: John Wiley & Sons, INC., 1986: 119–123.

    Google Scholar 

  35. COLTHUP N B, DALY L H, WIBERLEY S E. Introduction to infrared and Raman spectroscopy [M]. San Diego: Academic Press, 2012: 375–380.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Sun  (孙伟) or Run-qing Liu  (刘润清).

Additional information

Foundation item: Project(B14034) supported by the National 111 Project, China; Project(2015CX005) supported by the Innovation Driven Plan of Central South University, China; Project(2016zzts104) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Qj., Sun, W., Liu, Rq. et al. Preparation of α-calcium sulfate hemihydrate whiskers with high aspect ratios in presence of a minor amount of CuCl2·2H2O. J. Cent. South Univ. 25, 526–533 (2018). https://doi.org/10.1007/s11771-018-3757-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3757-0

Keywords

关键词

Navigation