Skip to main content
Log in

Numerical study on polymer nanofibers with electrically charged jet of viscoelastic fluid in electrospinning process

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Electrospinning is a useful and efficient technique to produce polymeric nanofibers. Nanofibers of polymers are electrospun by creating an electrically charged jet of polymer solution. Numerical study on non-Newtonian and viscoelastic jets of polymer nanofibers in electrospinning process is presented in this work. In particular, the effect of non-Newtonian rheology on the jet profile during the electrospinning process is examined. The governing equations of the problem are solved numerically using the Keller-Box method. The effects of yield stress and power-law index on the elongation, velocity, stress and total force are presented and discussed in detail. The results show that by increasing the values of yield stress, the fluid elongation is reduced significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ANDRADY A L. Science and technology of polymer nanofibers [M]. John Wiley & Sons, 2008.

    Book  Google Scholar 

  2. MANNARINO M M, RUTLEDGE G C. Mechanical and tribological properties of electrospun PA 6 (3) T fiber mats [J]. Polymer, 2012, 53: 3017-3025.

    Article  Google Scholar 

  3. HUANG Z M, ZHANG Y Z, KOTAKI M, RAMAKRISHNA S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Composites Science and Technology, 2003, 63: 2223-2253.

    Article  Google Scholar 

  4. TAYLOR G. Electrically driven jets [C]// Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1969: 453-475.

    Google Scholar 

  5. DOSHI J, RENEKER D H. Electrospinning process and applications of electrospun fibers [C]// Industry Applications Society Annual Meeting. IEEE, 1993: 1698-1703.

    Google Scholar 

  6. DROR Y, SALALHA W, KHALFIN R L, COHEN Y, YARIN A L, ZUSSMAN E. Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning [J]. Langmuir, 2003, 19: 7012-7020.

    Article  Google Scholar 

  7. CAMPOSEO A, GREENFELD I, TANTUSSI F, PAGLIARA S, MOFFA M, FUSO F, ALLEGRINI M, ZUSSMAN E, PISIGNANO D. Local mechanical properties of electrospun fibers correlate to their internal nanostructure [J]. Nano letters, 2013, 13: 5056-5062.

    Article  Google Scholar 

  8. CARROLL C P, JOO Y L. Electrospinning of viscoelastic Boger fluids: Modeling and experiments [J]. Physics of Fluids, 2006, 18: 053102.

    Article  Google Scholar 

  9. THERON S, YARIN A L, ZUSSMAN E, KROLL E. Multiple jets in electrospinning: Experiment and modeling [J]. Polymer, 2005, 46: 2889-2899.

    Article  Google Scholar 

  10. CARROLL C P, ZHMAYEV E, KALRA V, JOO Y L. Nanofibers from electrically driven viscoelastic jets: Modeling and experiments [J]. Korea-Aust Rheol J, 2008, 20: 153-164.

    Google Scholar 

  11. AKHAVAN BEHABADI M A, SADOUGHI M K, DARZI M, FAKOOR PAKDAMAN M. Experimental study on heat transfer characteristics of R600a/POE/CuO nano-refrigerant flow condensation [J]. Experimental Thermal and Fluid Science, 2015, 66: 46-52.

    Article  Google Scholar 

  12. DARZI M, AKHAVAN BEHABADI M A, SADOUGHI M K, RAZI P. Experimental study of horizontal flattened tubes performance on condensation of R600a vapor [J]. International Communications in Heat and Mass Transfer, 2015, 62: 18-25.

    Article  Google Scholar 

  13. ZOLFAGHARIAN A, KOUZANI A Z, KHOO S Y, AMIRI MOGHADAM A A, GIBSON I, KAYNAK A. Evolution of 3D printed soft actuators [J]. Sensors and Actuators A: Physical, 2016, 250: 258-272.

    Article  Google Scholar 

  14. FENG J. The stretching of an electrified non-Newtonian jet: A model for electrospinning [J]. Physics of Fluids, 2002, 14: 3912-3926.

    Article  MATH  Google Scholar 

  15. FENG J. Stretching of a straight electrically charged viscoelastic jet [J]. Journal of Non-Newtonian Fluid Mechanics, 2003, 116: 55-70.

    Article  MATH  Google Scholar 

  16. YARIN A L, KOOMBHONGSE S, RENEKER D H. Bending instability in electrospinning of nanofibers [J]. Journal of Applied Physics, 2001, 89: 3018-3026.

    Article  Google Scholar 

  17. ZOLFAGHARIAN A, VALIPOUR P, GHASEMI S E. Fuzzy force learning controller of flexible wiper system [J]. Neural Computing and Application, 2016, 27: 483-493.

    Article  Google Scholar 

  18. ZOLFAGHARIAN A, NOSHADI A, GHASEMI S E, MD M Z. A nonparametric approach using artificial intelligence in vibration and noise reduction of flexible systems [J]. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 2014, 228(8): 1329-1347.

    Article  Google Scholar 

  19. NOSHADI A, MAILAH M, ZOLFAGHARIAN A. Intelligent active force control of a 3-RRR parallel manipulator incorporating fuzzy resolved acceleration control [J]. Applied Mathematical Modelling, 2012, 36(6): 2370-2383.

    Article  MathSciNet  MATH  Google Scholar 

  20. ZOLFAGHARIAN A, NOSHADI A, KHOSRAVANI M R M D ZAIN M Z. Unwanted noise and vibration control using finite element analysis and artificial intelligence in flexible wiper system [J]. Applied Mathematical Modelling, 2014, 38: 2435-2453.

    Article  Google Scholar 

  21. ZOLFAGHARIAN A, GHASEMI S E, IMANI M. A multi-objective, active fuzzy force controller in control of flexible wiper system [J]. Latin Am J Solids Struct, 2014, 11(9): 1490-514.

    Article  Google Scholar 

  22. AHMADI ASOOR A A, VALIPOUR P, GHASEMI S E. Investigation on vibration of single walled carbon nanotubes by variational iteration method [J]. Appl Nanosci, 2016, 6: 243-249.

    Article  Google Scholar 

  23. GHASEMI S E, JALILI P S, HATAMI M, GANJI D D. Efficient analytical approaches for motion of a spherical solid particle in plane couette fluid flow using nonlinear methods [J]. The Journal of Mathematics and Computer Science 2012, 5(2): 97-104.

    Google Scholar 

  24. GHASEMI S E, HATAMI M, GANJI D D. Analytical thermal analysis of air-heating solar collectors [J]. Journal of Mechanical Science and Technology, 2013, 27(11): 3525-3530.

    Article  Google Scholar 

  25. MOHAMMADIAN E, GHASEMI S E, POORGASHTI H, HOSSEINI M, GANJ D D. Thermal investigation of Cu–water nanofluid between two vertical planes [J]. Proc IMechE Part E: J Process Mechanical Engineering 2015, 229(1): 36-43.

    Google Scholar 

  26. GHASEMI S E, HATAMI M, GANJI D D. Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation [J]. Case Studies in Thermal Engineering, 2014, 4: 1-8.

    Article  Google Scholar 

  27. GHASEMI S E, VALIPOUR P, HATAMI M, GANJI D D. Heat transfer study on solid and porous convective fins with temperaturedependent heat generation using efficient analytical method [J]. Journal of Central South University, 2014, 21: 4592-4598.

    Article  Google Scholar 

  28. AHMADI ASOOR A A, VALIPOUR P, GHASEMI S E, GANJI D D. Mathematical modelling of carbon nanotube with fluid flow using keller box method: A vibrational study [J]. Int J Appl Comput Math, DOI 10.1007/s40819-016-0206-3.

  29. VALIPOUR P, GHASEMI S E. Numerical investigation of MHD water-based nanofluids flow in porous medium caused by shrinking permeable sheet [J]. J Braz Soc Mech Sci Eng, 2016, 38: 859-868.

    Article  Google Scholar 

  30. GHASEMI S E, HATAMI M, JING D, GANJI D D. Nanoparticles effects on MHD fluid flow over a stretching sheet with solar radiation: A numerical study [J]. Journal of Molecular Liquids 2016, 219: 890-896.

    Article  Google Scholar 

  31. GHASEMI S E, ZOLFAGHARIAN A, GANJI D D. Study on motion of rigid rod on a circular surface using MHPM [J]. Propulsion and Power Research, 2014, 3(3): 159-164.

    Article  Google Scholar 

  32. GHASEMI S E, HATAMI M, HATAMI J, SAHEBI S A R, GANJI D D. An efficient approach to study the pulsatile blood flow in femoral and coronary arteries by Differential Quadrature Method [J]. Physica A, 2016, 443: 406-414.

    Article  MathSciNet  Google Scholar 

  33. GHASEMI S E, HATAMI M, ARMIA SALARIAN, DOMAIRRY G. Thermal and fluid analysis on effects of a nanofluid outside of a stretching cylinder with magnetic field the using differential quadrature method [J]. Journal of Theoretical and Applied Mechanics 2016, 54(2): 517-528.

    Article  Google Scholar 

  34. GHASEMI S E, HATAMI M, MEHDIZADEH AHANGAR G H R, GANJI D D. Electrohydrodynamic flow analysis in a circular cylindrical conduit using Least Square Method [J]. Journal of Electrostatics, 2014, 72: 47-52.

    Article  Google Scholar 

  35. GHASEMI S E, VATANI M, GANJI D D. Efficient approaches of determining the motion of a spherical particlein a swirling fluid flow using weighted residual methods [J]. Particuology, 2015, 23: 68-74.

    Article  Google Scholar 

  36. DARZI M, VATANI M, GHASEMI S E, GANJI D D. Effect of thermal radiation on velocity and temperature fields of a thin liquid film over a stretching sheet in a porous medium [J]. Eur Phys J Plus, 2015, 130: 100.

    Article  Google Scholar 

  37. GHASEMI S E, VATANI M, HATAMI M, GANJI D D. Analytical and numerical investigation of nanoparticle effect on peristaltic fluid flow in drug delivery systems [J]. Journal of Molecular Liquids, 2016, 215: 88-97.

    Article  Google Scholar 

  38. ATOUEI S A, HOSSEINZADEH K H, HATAMI M, GHASEMI S E, SAHEBI S A R, GANJI D D. Heat transfer study on convectiveradiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods [J]. Applied Thermal Engineering, 2015, 89: 299-305.

    Article  Google Scholar 

  39. GHASEMI S E, HATAMI M, KALANI S A, GANJI D D. Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods [J]. Physica E, 2015, 70: 146-156.

    Article  Google Scholar 

  40. VALIPOUR P, GHASEMI S E, KHOSRAVANI M R, GANJI D D. Theoretical analysis on nonlinear vibration of fluid flow in single-walled carbon nanotube [J]. J Theor Appl Phys, 2016, 10: 211-218.

    Article  Google Scholar 

  41. VATANI M, GHASEMI S E, GANJI D D. Investigation of micropolar fluid flow between a porous disk and a nonporous disk using efficient computational technique [J]. Proc IMechE Part E: J Process Mechanical Engineering, 2016, 230(6): 413-424.

    Google Scholar 

  42. VALIPOUR P, GHASEMI S E, VATANI M. Theoretical investigation of micropolar fluid flow between two porous disks [J]. Journal of Central South University, 2015, 22: 2825-2832.

    Article  Google Scholar 

  43. TALARPOSHTI R A, GHASEMI S E, RAHMANI Y, GANJI D D. Application of exp-function method to wave solutions of the sinegordon and ostrovsky equations [J]. Acta Mathematicae Applicatae Sinica, English Series, 2016, 32(3): 571-578.

    Article  MathSciNet  MATH  Google Scholar 

  44. RENEKER D H, YARIN A L, FONG H, KOOMBHONGSE S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning [J]. Journal of Applied Physics, 2000, 87: 4531-4547.

    Article  Google Scholar 

  45. HUANG X, GARCIA M H. A Herschel-Bulkley model for mud flow down a slope [J]. Journal of Fluid Mechanics, 1998, 374: 305-333.

    Article  MATH  Google Scholar 

  46. PONTRELLI G, ULBERTINI S, SUCCI S. The unstructured lattice Boltzmann method for non-Newtonian flows [J]. Journal of Statistical Mechanics: Theory and Experiment, 2009, P06005.

    Google Scholar 

  47. KELLER H B. A new difference scheme for parabolic problems, Num. Solns. of Partial Differential Equations, II [M]. Hubbard B ed. New York: Academic Press, 1971: 327-350.

    Google Scholar 

  48. BRADSHAW P, CEBECI T, WHITELAW J H. Engineering calculation methods for turbulent flow [M]. Academic Press, 1981.

    MATH  Google Scholar 

  49. PONTRELLI G, GENTILI D, COLUZZA I, PISIGNANO D, SUCCI S. Effects of non-linear rheology on electrospinning process: A model study [J]. Mechanics Research Communications, 2014, 61: 41-46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Valipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valipour, P., Zaersabet, H., Hatami, M. et al. Numerical study on polymer nanofibers with electrically charged jet of viscoelastic fluid in electrospinning process. J. Cent. South Univ. 24, 2275–2280 (2017). https://doi.org/10.1007/s11771-017-3638-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3638-y

Key words

Navigation