Skip to main content
Log in

Generalized thermoelastic interaction in functional graded material with fractional order three-phase lag heat transfer

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials (FGM) (i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach. The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABEL N H. Solution of some problems in using integrales olefines [J]. Werke, 1823, 1: 10.

    Google Scholar 

  2. CAPUTO M. Linear model of dissipation whose Q is always frequency independent [J]. Geophysical Journal of the Royal Astronomical Society, 1967, 13: 529–539.

    Article  Google Scholar 

  3. CAPUTO M. Vibrations on an infinite viscoelastic layer with a dissipative memory [J]. Journal of the Acoustic Society of America, 1974, 56: 897–904.

    Article  MATH  Google Scholar 

  4. CAPUTO M, MAINARDI F. A new dissipation model based on memory mechanism [J]. Pure and Applied Geophysics, 1971, 91: 134–147.

    Article  Google Scholar 

  5. CAPUTO M, MAINARDI F. Linear model of dissipation in an elastic solids [J]. Rivista del Nuovo Cimento, 1971, 1: 161–198.

    Article  Google Scholar 

  6. POVSTENKO Y Z. Fractional heat conduction equation and associated thermal stresses [J]. J Therm Stress, 2005, 28: 83–102.

    Article  MathSciNet  Google Scholar 

  7. POVSTENKO Y Z. Thermoelasticity that uses fractional heat conduction equation [J]. Journal of Mathematical Stresses, 2009, 162: 296–305.

    MathSciNet  Google Scholar 

  8. SHERIEF H H, EL-SAYED A M A, ABD EL-LATIEF A M. Fractional order theory of thermoelasticity [J]. Int J Solids Struct, 2010, 47: 269–273.

    Article  MATH  Google Scholar 

  9. YOUSSEF H H. Theory of fractional order generalized thermoelasticity [J]. J Heat Transf (ASME), 2010, 132: 1–7.

    Article  MathSciNet  Google Scholar 

  10. EZZAT M A. Theory of fractional order in generalized thermoelectric MHD. Applied Mathematical Modelling, 2011, 35: 4965–4978.

    Article  MATH  MathSciNet  Google Scholar 

  11. EZZAT M A. Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer [J]. Phys B, 2011, 406: 30–35.

    Article  Google Scholar 

  12. TZOU D. A unified field approach for heat conduction from macro-to micro-scales [J]. ASME J Heat Transfer, 1995, 117: 8–16.

    Article  Google Scholar 

  13. CHANDRASEKHARAIAH D. Hyperbolic thermoelasticity: A review of recent literature [J]. Appl Mech Rev, 1998, 51: 705–729.

    Article  Google Scholar 

  14. ROYCHOUDHURI S. On thermoelastic three-phase-lag model [J]. J Thermal Stresses, 2007, 30: 231–238.

    Article  Google Scholar 

  15. EZZAT M, ELKARAMANY A, FAYIK M. Fractional order theory in thermoelastic solid with three-phase lag heat transfer [J]. Arch Appl Mech, 2012, 82: 557–572.

    Article  MATH  Google Scholar 

  16. SURESH S, MORTENSEN A. Fundamentals of functionally graded materials [M]. London: Institute of Materials Communications Ltd, 1998.

    Google Scholar 

  17. MALLIK S H, KANORIA M. Generalized thermoelastic functionally graded solid with a periodically varying heat source [J]. International Journal of Solids and Structures, 2007, 44: 7633–7645.

    Article  MATH  Google Scholar 

  18. DAS P, KANORIA M. Magneto-thermoelastic response in a functionally graded isotropic unbounded medium under a periodically varying heat source [J]. Int J Thermophys, 2009, 30: 2098–2121.

    Article  MathSciNet  Google Scholar 

  19. ABBAS I A. Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity [J]. Journal of Computational and Theoretical Nanoscience, 2014, 11(4): 987–992.

    Article  Google Scholar 

  20. ABBAS I A, MOHAMED I. Generalized thermoelsticity of the thermal shock problem in an isotropic hollow cylinder and temperature dependent elastic moduli [J]. Chinese Physics B, 2012, 21(1): 4601.

    Article  Google Scholar 

  21. ABBAS I A, YOUSSEF H M. A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method [J]. International Journal of Thermophysics, 2012, 33(7): 1302–1313.

    Article  Google Scholar 

  22. ABBAS I A. Generalized magneto-thermoelastic interaction in a fiber-reinforced anisotropic hollow cylinder [J]. International Journal of Thermophysics, 2012, 33(3): 567–579.

    Article  Google Scholar 

  23. ABBAS I A, OTHMAN M I. Generalized thermoelastic interaction in a fiber-reinforced anisotropic half-space under hydrostatic initial stress [J]. Journal of Vibration and Control, 2012, 18(2): 175–182.

    Article  MathSciNet  Google Scholar 

  24. ZENKOUR A M, ABBAS I A. Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element model [J]. Journal of Vibration and Control, 2014, 20(12): 1907–1919.

    Article  MathSciNet  Google Scholar 

  25. ABBAS I A. A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity [J]. Applied Mathematics and Computation, 2014, 245: 108–115.

    Article  MathSciNet  Google Scholar 

  26. ABBAS I A. A GN model for thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a circular hole [J]. Applied Mathematics Letters, 2013, 26(2): 232–239.

    Article  MATH  MathSciNet  Google Scholar 

  27. ABBAS I A, KUMAR R. Interaction due to a mechanical source in transversely isotropic micropolar media [J]. Journal of Vibration and Control, 2014, 20(11): 1607–1621.

    Article  MathSciNet  Google Scholar 

  28. ABBAS I A. Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory [J]. Journal of Mechanical Science and Technology, 2014, 28(10): 4193–4198.

    Article  Google Scholar 

  29. ABBAS I A. Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole [J]. Journal of Computational and Theoretical Nanoscience, 2014, 11(2): 380–384.

    Article  Google Scholar 

  30. KUMAR R, GUPTA V, ABBAS I A. Plane deformation due to thermal source in fractional order thermoelastic media [J]. Journal of Computational and Theoretical Nanoscience, 2013, 10(10): 2520–2525.

    Article  Google Scholar 

  31. OTHMAN M I A, ABBAS I A. Generalized thermoelasticity of thermal-shock problem in a non-homogeneous isotropic hollow cylinder with energy dissipation [J]. International Journal of Thermophysics, 2012, 33(5): 913–923.

    Article  Google Scholar 

  32. ABBAS I A, ZENKOUR A M. LS model on electro-magneto-thermoelastic response of an infinite functionally graded cylinder [J]. Composite Structures, 2013, 96: 89–96.

    Article  Google Scholar 

  33. ABBAS I A, KUMAR R. Deformation due to thermal source in micropolar thermo-elastic media with thermal and conductive temperatures [J]. Journal of Computational and Theoretical Nanoscience 2013, 10(9): 2241–2247.

    Article  Google Scholar 

  34. ABBAS I A, ZENKOUR A M. The effect of rotation and initial stress on thermal shock problem for a fiber-reinforced anisotropic half-space using Green-Naghdi theory [J]. Journal of Computational and Theoretical Nanoscience, 2014, 11(2): 331–338.

    Article  Google Scholar 

  35. ABBAS I A. Eigenvalue approach to fractional order generalized magneto-thermoelastic medium subjected to moving heat source [J]. Journal of Magnetism and Magnetic Materials, 2015, 377: 452–459.

    Article  Google Scholar 

  36. STEHFEST H. Numerical inversion of Laplace transforms algorithm 368 [J]. Commun ACM, 1979, 13(1): 47–49.

    Article  Google Scholar 

  37. GREEN A E, NAGHDI P M. On undamped heat waves in an elastic solid [J]. J Therm Stress, 1992, 15: 253–264.

    Article  MathSciNet  Google Scholar 

  38. GREEN A E, NAGHDI P M. Thermoelasticity without energy dissipation [J]. J Elast, 1993, 31: 189–208.

    Article  MATH  MathSciNet  Google Scholar 

  39. LAHIRI A, DAS B, DATTA B. Eigenvalue value approach to study the effect of rotation in three-dimensional problem of generalized thermoelasticity [J]. International Journal of Applied Mechanics and Engineering, 2010, 15: 99–120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim A. Abbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, I.A. Generalized thermoelastic interaction in functional graded material with fractional order three-phase lag heat transfer. J. Cent. South Univ. 22, 1606–1613 (2015). https://doi.org/10.1007/s11771-015-2677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2677-5

Key words

Navigation