Skip to main content
Log in

Application of fractional order theory to a functionally graded perfect conducting thermoelastic half space with variable Lamé’s Modulii

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this work, the model of fractional magneto-thermoelasticity is applied to a one-dimensional thermal shock problem for a functionally graded half-space whose surface is assumed to be traction free and subjected to an arbitrary thermal loading. The Lamé’s modulii is taken as functions of the vertical distance from the surface of thermoelastic perfect conducting medium in the presence of a uniform magnetic field. Laplace transform and the perturbation techniques are used to derive the solution in the Laplace transform domain. Numerical inversion of the Laplace transform is carried out to obtain the temperature, displacement, stress and induced magnetic and electric field distributions. Numerical results are represented graphically and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Biot M (1955) Variational principle in irreversible thermodynamics with application to viscoelasticity. Phys Rev 97:1463–1469

    Article  MathSciNet  MATH  Google Scholar 

  • Chakraborty A, Gopalakrishnan S, Reddy JN (2003) A new beam finite element for the analysis of functionally graded materials. Int J Mech Sci 45:519–539

    Article  MATH  Google Scholar 

  • Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity, a review of recent literature. Appli Mech Rev 51:705–729

    Article  Google Scholar 

  • El-Karamany AS, Ezzat MA (2002) On the boundary integral formulation of thermo-viscoelasticity theory. Int J Eng Sci 40:1943–1956

    Article  MathSciNet  MATH  Google Scholar 

  • El-Karamany AS, Ezzat MA (2004) Boundary integral equation formulation for the generalized thermoviscoelasticity with two relaxation times. J Appl Math Compu 151:347–362

    Article  MathSciNet  MATH  Google Scholar 

  • El-Karamany AS, Ezzat MA (2005) Propagation of discontinuities in thermopiezoelectric rod. J Therm Stress 28:997–1030

    Article  Google Scholar 

  • El-Karamany AS, Ezzat MA (2011a) On fractional thermoelastisity. Math Mech Solids 16:334–346

    Article  MathSciNet  MATH  Google Scholar 

  • El-Karamany AS, Ezzat MA (2011b) Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. J Therm Stress 34:264–284

    Article  Google Scholar 

  • Ezzat MA (2001) Free convection effects on perfectly conducting fluid. Int J Eng Sci 39:799–819

    Article  MATH  Google Scholar 

  • Ezzat MA (2006) The relaxation effects of the volume properties of electrically conducting viscoelastic material. Mater Sci Eng B 130:11–23

    Article  Google Scholar 

  • Ezzat MA (2011a) Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Phys B 406:30–35

    Article  Google Scholar 

  • Ezzat MA (2011b) Theory of fractional order in generalized thermoelectric MHD. Appl Math Model 35:4965–4978

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat MA (2011c) Thermoelectric MHD with modified Fourier’s law. Int J Therm Sci 50:449–455

    Article  Google Scholar 

  • Ezzat MA (2012) State space approach to thermoelectric fluid with fractional order heat transfer. Heat Mass Transf 48:71–82

    Article  Google Scholar 

  • Ezzat MA, Atef HM (2011) Magneto-electro viscoelastic layer in functionally graded materials. Compos B 42:832–841

    Article  Google Scholar 

  • Ezzat MA, El-Bary AA (2016a) Unified fractional derivative models of magneto-thermo-viscoelasticity theory. Arch Mech 68:285–308

    MathSciNet  MATH  Google Scholar 

  • Ezzat MA, El-Bary AA (2016b) Application of fractional order theory of magneto-thermoelasticity to an infinite perfect conducting body with a cylindrical cavity. Microsysm Tech. doi:10.1007/s00542-016-2976-2

    Google Scholar 

  • Ezzat MA, El-Bary AA (2017) Thermoelectric spherical shell with fractional order heat transfer. Microsyst Technol. doi:10.1007/s00542-017-3400-2

    Google Scholar 

  • Ezzat MA, El-Karamany AS (2002a) The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times. Int J Eng Sci 40:1275–1284

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat MA, El-Karamany AS (2002b) Magnetothermoelasticity with thermal relaxation in a conducting medium with variable electrical and thermal conductivity. J Therm Stress 25:859–875

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS (2003) On uniqueness and reciprocity theorems for generalized thermoviscoelasticity with thermal relaxation. Canad J Phys 81:823–833

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS (2006) Propagation of discontinuities in magneto-thermoelastic half-space. J Therm Stress 29:331–358

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS (2011a) Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures. ZAMP 62:937–952

    Article  MathSciNet  MATH  Google Scholar 

  • Ezzat MA, El-Karamany AS (2011b) Theory of fractional order in electro-thermoelasticity. Euro J Mech A/Solid 30:491–500

    Article  MATH  Google Scholar 

  • Ezzat MA, Othman MI (2002) State space approach to generalized magneto-thermoelasticity with thermal relaxation in a medium of perfect conductivity. J Therm Stress 25:409–429

    Article  Google Scholar 

  • Ezzat MA, Zakaria M, Shaker O, Barakat F (1996) State space formulation to viscoelastic fluid flow of magnetohydrodynamie free convection through a porous medium. Acta Mech 199:147–164

    Article  MATH  Google Scholar 

  • Ezzat MA, El-Karamany AS, Samaan AA (2004) The dependence of the modulus of elasticity on reference temperature in generalized thermoelasticity with thermal relaxation. Appl Math Comput 147:169–189

    MathSciNet  MATH  Google Scholar 

  • Ezzat MA, El-Karamany AS, Fayik M (2012) Fractional order theory in thermoelastic solid with three-phase lag heat transfer. Arch Appl Mech 82:557–572

    Article  MATH  Google Scholar 

  • Ezzat MA, El-Karamany AS, El-Bary AA, Fayik M (2014a) Fractional ultrafast laser-induced magneto-thermoelastic behavior in perfect conducting metal films. J Electromag Waves Applic 28:64–82

    Article  Google Scholar 

  • Ezzat MA, Al-Sowayan NS, Al-Muhiameed ZI (2014b) Fractional modelling of Pennes’ bioheat transfer equation. Heat Mass Transf 50:907–914

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS, El-Bary AA (2015a) Electro-magnetic waves in generalized thermo-viscoelasticity for different theories. Int J Appl Electromagn Mech 47:95–111

    Google Scholar 

  • Ezzat MA, El-Karamany AS, El-Bary AA (2015b) A novel magnetothermoelasticity theory with memory-dependent derivative. J Electromagn Waves Appl 29:1018–1031

    Article  Google Scholar 

  • Hetnarski RB, Ignaczak J (1999) Generalized thermoelasticity. J Therm Stress 22:451–476

    Article  MathSciNet  MATH  Google Scholar 

  • Honig G, Hirdes U (1984) A method for the numerical inversion of the Laplace transform. J Comput Appl Math 10:113–132

    Article  MathSciNet  MATH  Google Scholar 

  • Javaheri R, Eslami MR (2002) Thermal buckling of functionally graded plates. J Am Ceram Soc 40:162–169

    MATH  Google Scholar 

  • Koizumi M (1997) FGM activities in Japan. Compos B 28:1–4

    Article  Google Scholar 

  • Lee W, Stinton D, Berndt C, Erdogan F, Lee Y, Mutasim Z (1996) Concept of functionally graded materials for advanced thermal barrier coating applications. J Am Ceram Soc 79:3003–3012

    Article  Google Scholar 

  • Lord H, Shulman YA (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  MATH  Google Scholar 

  • Nayfeh A, Nemat-Nasser S (1972) Electromagneto–thermoelastic plane waves in solids with thermal relaxation. J Appl Mech Ser E 39:108–113

    Article  MATH  Google Scholar 

  • Nowinski JL (1978) Theory of Thermoelasticity with Applications. Sijthoff & Noordhoff International, Alphen Aan Den Rijn

    Book  MATH  Google Scholar 

  • Povstenko YZ (2005) Fractional heat conduction and associated thermal stress. J Therm Stress 28:83–102

    Article  MathSciNet  Google Scholar 

  • Povstenko Y (2011) Fractional Cattaneo-type equations and generalized thermoelasticity. J Therm Stress 34:97–114

    Article  Google Scholar 

  • Praveen G, Chin C, Reddy J (1999) Thermoelastic analysis of functionally graded ceramic-metal cylinder. J Eng Mech 125:1259–1267

    Article  Google Scholar 

  • Roy Choudhuri SK (1984) Electro–magneto–thermoelastic waves in rotating media with thermal relaxation. Int J Eng Sci 22:519–530

    Article  MATH  Google Scholar 

  • Sankar BV, Tzeng JT (2002) Thermal stress in functionally graded beams. Am Inst Aeron Astron J 40:1228–1232

    Article  Google Scholar 

  • Sherief HH (1986) Fundamental solution of generalized thermoelastic problem for short times. J Therm Stress 9:151–164

    Article  Google Scholar 

  • Sherief H, Abd El-Latief A (2013) Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity. Int J Mech Sci 74:185–189

    Article  Google Scholar 

  • Sherief HH, Abd El-Latief A (2014) Application of fractional order theory of thermoelasticity to a 1D problem for a half-space. J Appl Math Mech 94:509–515

    MathSciNet  MATH  Google Scholar 

  • Sherief H, Abd El-Latief A (2016) Modeling of variable Lamé’s modulii for a FGM generalized thermoelastic half Space. Lat Am J Solids Struc 13:715–730

    Article  Google Scholar 

  • Sherief HH, Ezzat MA (1998) A problem in generalized magneto–thermoelasticity for an infinitely long annular cylinder. J Eng Math 34:387–402

    Article  MathSciNet  MATH  Google Scholar 

  • Tsukamoto H (2010) Design of functionally graded thermal barrier coatings based on a nonlinear micromechanical approach. Comput Mater Sci 50:429–436

    Article  Google Scholar 

  • Zenkour AM (2013) A simple four-unknown refined theory for bending analysis of functionally graded plates. Appl Math Model 37:9041–9051

    Article  MathSciNet  Google Scholar 

  • Zhang DG (2013) Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Compos Struct 100:121–126

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the approval and the support of this research study by the grant no. SCI-2016-1-6-F-6842 from the Deanship of Scientific Research in Northern Border University, Arar, KSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy A. Ezzat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendy, M.H., Amin, M.M. & Ezzat, M.A. Application of fractional order theory to a functionally graded perfect conducting thermoelastic half space with variable Lamé’s Modulii. Microsyst Technol 23, 4891–4902 (2017). https://doi.org/10.1007/s00542-017-3409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3409-6

Keywords

Navigation