Skip to main content
Log in

Strength failure and crack coalescence behavior of sandstone containing single pre-cut fissure under coupled stress, fluid flow and changing chemical environment

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to study the strength failure and crack coalescence characteristics of cracked rocks, uniaxial compression experiments were conducted on cylindrical sandstone specimens, sampled from Longyou Grottoes of Zhejiang Province, China, with a single pre-cut crack soaking in different chemical solutions. Based on the results of uniaxial compressive test under different chemical solutions and velocities of flow, the effect of strength and deformation characteristics and main modes of crack coalescence for cracked rocks under chemical corrosion were analyzed. The results show that the pH value and velocity of the chemical solutions both have great influence on the sandstone sample’s uniaxial compressive strength and deformation characteristics. Cracked sandstone samples are tension-destructed under uniaxial compression, and the crack propagation directions are consistent with the loading direction. The phenomena of crack initiation, propagation and coalescence of sandstone are well observed. Four different crack types are identified based on the crack propagation mechanism by analyzing the ultimate failure modes of sandstone containing a single pre-cut fissure. The failure process of specimen in air is similar with the specimen under chemical solutions, however, the initial time of crack occuring in specimen under chemical solutions is generally earlier than that in the natural specimen, and the crack propagation and coalescence process of specimen under chemical solutions are longer than those of the natural specimen due to softening of structure of rock caused by hydro-chemical action. Immersion velocity of flow and chemical solutions does not have influence on the ultimate modes of crack coalescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WU Yan-qing. Groundwater flow and geological hazards [J]. Underground Space, 1999, 19(4): 303–310. (in Chinese)

    Google Scholar 

  2. LAJTAI E Z, SCHMIDTKE R H, BIELUS L P. The effect of water on the time-dependent deformation and fracture of a granite [J]. Int J Rock Mech Min Sci Geomech Abstr, 1987, 24: 247–255.

    Article  Google Scholar 

  3. CHARLES R J. The strength of silicate glasses and some crystalline oxides [C]// Fracture, Proceedings of the International Conference Atomic Mechanisms of Fracture. Cambridge: MIT Press, 1959: 225–249.

    Google Scholar 

  4. WESTOOD A R C, MACMILLAN N H. Environmental-sensitive hardness of nonmentals [M]// The Science of Hardness Testing. Cleveland: ASTM, 1973: 377–417.

    Google Scholar 

  5. SETO M, VUTUKURI V S, NAG D K, KATSUYAMA K. The effect of chemical additives on strength of rock [J]. Proc Civ Eng, 1998, 603/III-44: 157–166.

    Google Scholar 

  6. SWOLFS H S, FRIEDMAN M. Mechemical and chemical effects of pore fluids on rock properties [J]. American Association of Petroleum Geologists bulletin, 1971, 55(11): 2090–2100.

    Google Scholar 

  7. KARFAKIS M G, ASKRAM M. Effects of chemical solutions on rock fracturing [J]. Int J Rock Mech Min Sci Geomech Abstr, 1993, 37: 1253–1259.

    Article  Google Scholar 

  8. ENGELMANN W H, WATSON P J, TUZINSKI P A, PAHLMAN J E. Zeta potential control for simultaneous enhancement of penetration rates and bit life in rock drilling: USA [P], 1987.

    Google Scholar 

  9. GEILIKMAN M B, DUSSEAULT M B. Mechno-chemical corrosion of shales in borehole-mud contact [M]. Rock Mechanics Tools and Techniques. Rotterdam: Balkema, 1996: 959–964.

    Google Scholar 

  10. BOTTAI A, CIGNI U. Completion techniques in deep geothermal drilling [J]. Geomechanica, 1985, 14: 309–314.

    Google Scholar 

  11. WILSON G. How to reduce drillstring fatigue failure in a corrosive environment [J]. World Oil, 1998, 219: 40–42.

    Google Scholar 

  12. ISHIDO T, MIZUTANI H. Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics [J]. J Geophys Res, 1984, 219: 1763–1775.

    Google Scholar 

  13. DUNNING J, DOUGLAS B, MILLAR M, McDONALDS S. The role of the chemical environment in frictional deformation: Stress corrosion cracking and comminution [J]. Pageoph, 1994, 143: 151–178.

    Article  Google Scholar 

  14. FEUCHT L J, LOGAN J M. Effects of chemically active solutions on shearing behavior of a sandstone [J]. Tectonophysics, 1990, 175: 159–176.

    Article  Google Scholar 

  15. DING Wu-xiu, FENG Xia-ting. Testing study on mechanical effect for limestone under chemical erosion [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3571–3576. (in Chinese)

    Google Scholar 

  16. CHEN Si-li, FENG Xia-ting, LI Shao-jun. The effects of chemical erosion on mechanical behaviors of Xiaolangdi sandstone [J]. Rock and Soil Mechanics, 2002, 23(3): 284–287. (in Chinese)

    Google Scholar 

  17. ZHOU Hui, FENG Xia-ting. Advances in coupled mechanical-hydro-chemical process in rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 855–864. (in Chinese)

    MathSciNet  Google Scholar 

  18. FENG Xia-ting, DING Wu-xiu. Experimental study of limestone microfracturing under a coupled stress, fluid flow and changing chemical environment [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 437–448.

    MathSciNet  Google Scholar 

  19. YAO Hua-yan, FENG Xia-ting, CUI Qiang, ZHOU Hui. Meso-mechanical experimental study of meso-fracturing process of limestone under coupled chemical corrosion and water pressure [J]. Rock and Soil Mechanics, 2009, 30(1): 59–66. (in Chinese)

    Google Scholar 

  20. SHEN Lin-fang, FENG Xia-ting, PAN Peng-zhi, ZHOU Hui. Experimental research on mechano-hydro-chemical coupling of granite with single fracture [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(7): 1379–1388. (in Chinese)

    Google Scholar 

  21. PAN Peng-zhi, FENG Xia-ting, XU Ding-ping, SHEN Lin-fang, YANG Jin-Bao. Modelling fluid flow through a single fracture with different contacts using cellular automata [J]. Computers and Geotechnics, 2011, 38(8): 959–969.

    Article  Google Scholar 

  22. FENG Xia-ting, DING Wu-xiu. Experimental study of limestone micro-fracturing under a coupled stress, fluid flow and changing chemical environment [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 437–448.

    MathSciNet  Google Scholar 

  23. KAZEMPOUR M, SUNDSTROM E, ALVARADO V. Geochemical modeling and experimental evaluation of high-pH floods: Impact of Water-Rock interactions in sandstone [J]. Fuel, 2012, 92(1): 216–230.

    Article  Google Scholar 

  24. FENG Xia-ting, DING Wu-xiu. Coupled chemical stress processes in rock fracturing [J]. Materials Research Innovations, 2011, 15(s1): s547–s550.

    Article  MathSciNet  Google Scholar 

  25. DING Wu-xiu. Study on microstructure variation of different areas of fractured rock under triaxial compression with chemical corrosion and permeation [J]. Advances in Heterogeneous Material Mechanics, 2011: 865–868.

    Google Scholar 

  26. FENG Xia-ting, DING Wu-xiu, ZHANG Dong-xiao. Multi-crack interaction in limestone subject to stress and flow of chemical solutions [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 159–171.

    Google Scholar 

  27. FENG Xia-ting, CHEN Si-li, ZHOU Hui. Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 181–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu-de Lu  (鲁祖德).

Additional information

Foundation item: Projects(10472130, 41202225) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Zd., Chen, Cx., Feng, Xt. et al. Strength failure and crack coalescence behavior of sandstone containing single pre-cut fissure under coupled stress, fluid flow and changing chemical environment. J. Cent. South Univ. 21, 1176–1183 (2014). https://doi.org/10.1007/s11771-014-2051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-2051-z

Key words

Navigation