Skip to main content
Log in

In-situ growth of silver nanostructure on quartz glass substrates

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Silver nanostructure compact aggregates on the surface of quartz glass substrates were synthesized by small gold seeds with the assistance of poly vinypyrrolidone (PVP) and irradiation of fluorescent lamp. The formation mechanism of silver nanostructure was proposed. The results show that both the PVP and the light irradiation are the keys to in-situ growth of silver nanostructure on quartz glass substrates. The silver nanostructure of the substrates which finally grow up to 150 nm after 20 h irradiation exhibits irregular shape, and some of nanoparticles stack to form bilayer. A new broad band appears in the absorption spectra of the substrates due to the interparticle dipole-dipole coupling of surface plasmon resonance response of the triangular silver nanoplate particles, which red shifts 600–800 nm as the particles grow up. The substrates have an emission band centered at 400 nm on their fluorescence spectra, and the fluorescence intensity shrinks as the average size of the silver nanostructure increases. The strongest SERS signal of SERS-active substrate is fabricated after 16 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BHUPENDRA C, ANJANA K V, NIDHI A, MEHTA R V, UPADHYAY R V. Highly bacterial resistant silver nanoparticles: Synthesis and antibacterial activities [J]. J Nanopart Res, 2010, 12(3): 1677–1685.

    Google Scholar 

  2. NELAYAH J, KOCIAK M, GEUQUET N, COLLIEX C. Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms [J]. Nano Lett, 2010, 10(1): 902–907.

    Article  Google Scholar 

  3. SANTANA A C, ROCHA T C R, SANTOS P S, ZANCHET D, TEMPERINI M L A. Size-dependent SERS enhancement of colloidal silver nanoplates: The case of 2-amino-5-nitropyridine [J]. J Raman Spectrosc, 2009, 40(1): 183–190.

    Article  Google Scholar 

  4. CHETNA D, MAUMITA D, GAJJALA S, AVANISH K S, MANOJ K D, CHEOL G K, MONIKA D, BANSI D M. Preparation, characterization and application of polyaniline nanospheres to biosensing [J]. Nanoscale, 2010, 2(1): 747–754.

    Google Scholar 

  5. ZHOU J, XU S P, XU W Q, ZHAO B. In situ nucleation and growth of silver nanoparticles inmembranematerials: A controllable roughened SERS substrate with high reproducibility [J]. J Raman Spectrosc, 2009, 40(1): 31–37.

    Article  Google Scholar 

  6. CUI X Q, LI C M, BAO H F, ZHENG X T, LU Z S. In situ fabrication of silver nanoarrays in hyaluronan/PDDA layer-by-layer assembled structure [J]. Journal of Colloid and Interface Science, 2008, 327(1): 459–465.

    Article  Google Scholar 

  7. HUANG Qian, WANG Jing, CAO Li-ran, SUN Jian, ZHANG Xiao-dan, GENG Wei-dong, XIONG Shao-zhen, ZHAO Ying. Research of surface enhanced Raman scattering caused by surface plasmon of Ag nanostructures [J]. Acta Physica Sinica, 2009, 58(3): 1980–1985. (in Chinese)

    Google Scholar 

  8. NISHIKAWA T, NAKANO H, OGURI K, UESUGI N, NAKAO M, NISHIO M, MASUDA H. Nanocylinder-array structure greatly increases the soft X-ray intensity generated from femtosecond-laser-produced plasma [J]. Appl Phys B, 2001, 73(2): 185–188.

    Article  Google Scholar 

  9. LIU G Q, CAI W P, LIANG C H. Trapeziform Ag nanosheet arrays induced by electrochemical deposition on Au-coated substrate [J]. Cryst Growth Des, 2008, 8(8): 2748–2752.

    Article  Google Scholar 

  10. TIAN Zong-jun, WANG Gui-feng, HUANG Yin-hui, LIU Zhi-dong, CHEN Jin-song. Fractal growth of Ni dendrite in electrodeposition [J]. The Chinese Journal of Nonferrous Metals, 2009, 19(1): 167–173. (in Chinese)

    Google Scholar 

  11. GEDVILAS M, VOISIAT B, RACIUKAITIS G, REGELSKIS K. Self-organization of thin metal films by irradiation with nanosecond laser pulses [J]. Applied Surface Science, 2009, 255(6): 9826–9829.

    Article  Google Scholar 

  12. JIA H Y, ZENG J B, AN J, SONG W, XU W Q, ZHAO B. Preparation of silver nanoparticles by photo-reduction for surface-enhanced Raman scattering [J]. Thin Solid Films, 2006, 496(2): 281–287.

    Article  Google Scholar 

  13. JIA H Y, ZENG J B, AN J, SONG W, XU W Q, ZHAO B. Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate [J]. Thin Solid Films, 2008, 516(7): 5004–5009.

    Article  Google Scholar 

  14. ZHAO J W, TIAN R H, ZHI J F. Deposition of silver nanoleaf film onto chemical vapor deposited diamond substrate and its application in surface-enhanced Raman scattering [J]. Thin Solid Films, 2008, 516(6): 4047–4052.

    Article  Google Scholar 

  15. ASLAN K, JOSEPH R, CHRIS D G. Rapid deposition of triangular silver nanoplates on planar surfaces: Application to metal-enhanced fluorescence [J]. J Phys Chem B, 2005, 109(13): 6247–6251.

    Article  Google Scholar 

  16. YI Zao, TANG Yong-jian, YI You-gen, LI Kai, LUO Jiang-shan, LI Xi-bo, ZHANG Jian-bo, YE Xin. Preparation of hollow silver microspheres and their characterization [J]. High Power Laser and Particle Beams, 2009, 21(9): 1354–1359. (in Chinese)

    Google Scholar 

  17. KELLY K L, CORONADO E, ZHAO L L, GEORGE C S. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment [J]. J Phys Chem B, 2003, 107(3): 668–677.

    Article  Google Scholar 

  18. XU X, STEVENS M, CORTIE M B. In situ precipitation of gold nanoparticles onto glass for potential architectural applications [J]. Chem Mater, 2004, 16(3): 2259–2266.

    Article  Google Scholar 

  19. SUN Y, GATES B, MAYERS B, XIA Y N. Crystalline silver nanowires by soft solution processing [J]. Nano Lett, 2002, 2(2): 165–168.

    Article  MATH  Google Scholar 

  20. MOHAMED M B, VOLKOV V, LINK S, MOSTSFA A E. The ‘lightning’ gold nanorods: Fluorescence enhancement of over a million compared to the gold metal [J]. Chem Phys Lett, 2000, 317(6): 517–523.

    Article  Google Scholar 

  21. WILCOXON J P, MARTIN J E, PARSAPOUR F, WIEDENMAN B, KELLEY D F. Photoluminescence from nanosize gold clusters [J]. J Chem Phys, 1998, 108(17): 9137–9143.

    Article  Google Scholar 

  22. GROCHALA W, KUDELSKI A, BUKOWSKA J. Anion-induced charge-transfer enhancement in SEES and SERRS spectra of rhodamine 6G on a silver electrode: How important is it? [J]. J Raman Spectrosc, 1998, 29(8): 681–685.

    Article  Google Scholar 

  23. WEI G, ZHOU H L, LIU Z G, LI Z. A simple method for the preparation of ultrahigh sensitivity surface enhanced Raman scattering (SERS) active substrate [J]. Applied Surface Science, 2005, 240(1): 260–267.

    Article  Google Scholar 

  24. WASHIO I, XIONG Y, YIN Y, XIA Y. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates [J]. Adv Mater, 2006, 18(6): 1745–1749.

    Article  Google Scholar 

  25. KAN C, CAI W, LI C, ZHANG L D. Optical studies of polyvinylpyrrolidone reduction effect on free and complex metal ions [J]. J Mater Res, 2005, 20(2): 320–324.

    Article  Google Scholar 

  26. JIANG P, LI S Y, XIE S S, GAO Y, SONG L. Machinable long PVP-stabilized silver nanowires [J]. Chem Eur J, 2004, 10(5): 4817–4821.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-gen Yi  (易有根).

Additional information

Foundation item: Projects(10804101, 60908023) supported by the National Natural Science Foundation of China; Project(2007CB815102) supported by the National Basic Research Program of China; Project(2007B08007) supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, Z., Zhang, Jb., Niu, G. et al. In-situ growth of silver nanostructure on quartz glass substrates. J. Cent. South Univ. Technol. 19, 312–318 (2012). https://doi.org/10.1007/s11771-012-1006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-012-1006-5

Key words

Navigation