Skip to main content
Log in

Synthesis and In-Depth Study of the Mechanism of Silver Nanoplate and Nanodecahedra Growth by LED Irradiation for SERS Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silver nanodecahedra and nanoplates were successfully fabricated using a simple solution method, where silver nitrate (AgNO3) was reduced with sodium borohydride (NaBH4) at melting ice temperature. Green light-emitting diode (green LED, wavelength λG = 520 nm) was irradiated into the reaction system to control the morphology of the product. The synthetic procedure was a combination of two processes including the formation of silver seeds and subsequent photomediated crystal growth. This article also presents a mechanism study of the photomediated growth of silver nanoplates and nanodecahedra. In these processes, citrate ions were used as a morphology-controlled reagent and polyvinyl pyrrolidone as a capping agent. The growth process was evaluated by dynamic light scattering and ultraviolet/visible spectra measurements. The obtained silver nanoparticles (AgNPs) possessed various shapes, including triangular, truncated triangular, hexagonal and decahedron depending on the time duration of LED irradiation. Triangular nanoplates or decahedral nanoparticles (80–100 nm) were obtained when the silver colloid was exposed to green LED irradiation for different times (30 min—76 h). The average width and thickness of such nanoparticles were estimated to be approximately 80 nm and 20 nm, respectively. The technology uniqueness in this work is that we can change the morphology of silver from plate to decahedron via prolonging the LED illumination period from 140 min to 76 h instead of changing the light wavelength or temperature of the reaction solution. The surface-enhanced Raman scattering (SERS) experiment was carried out to measure Rhodamine 6G (R6G) concentrations plated on the silicon substrates. Silver nanodecahedra can detect the low concentration of R6G (10−8 M), while silver nanoplates can detect a higher R6G concentration of 10−6 M. Silver nanodecahedra could be used as an effective SERS substrate for ultrasensitive detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Botelho, J.C. Sczancoski, J. Andres, L. Gracia, and E. Longo, J. Phys. Chem. C 119, 6293 (2015).

    CAS  Google Scholar 

  2. M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, and Y. Xia, Chem. Rev. 111, 3669 (2011).

    CAS  Google Scholar 

  3. W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Gorecka, Nat. Commun. 6, 6590 (2015).

    Google Scholar 

  4. N. Duran, P.D. Marcato, G.I.H.D. Souza, O.L. Alves, and E. Esposito, J. Biomed. Nanotechnol. 3, 203 (2007).

    CAS  Google Scholar 

  5. N.G. Mlalila, H.S. Swai, A. Hilonga, and D.M. Kadam, Nanotechnol. Sci. Appl. 10, 1 (2017).

    CAS  Google Scholar 

  6. A. Rout, P.K. Jena, D. Sahoo, and B.K. Bindhani, Int. J. Curr. Microbiol. Appl. Sci. 3, 374 (2014).

    CAS  Google Scholar 

  7. K. Jyoti, M. Baunthiyal, and A. Singh, J. Radiat. Res. Appl. Sci. 9, 217 (2016).

    CAS  Google Scholar 

  8. L. Kvitek, A. Panacek, J. Soukupova, M. Kolar, R. Vecerova, R. Prucek, M. Holecova, and R. Zboril, J. Phys. Chem. C 112, 5825 (2008).

    CAS  Google Scholar 

  9. J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, and M.J. Yacaman, Nanotechnology 16, 2346 (2005).

    CAS  Google Scholar 

  10. C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu, and C.-M. Che, J. Biol. Inorg. Chem. 12, 527 (2007).

    CAS  Google Scholar 

  11. M. Sivera, L. Kvitek, J. Soukupova, A. Panacek, R. Prucek, R. Vecerova, and R. Zboril, PLoS ONE 9, 103675 (2014).

    Google Scholar 

  12. S. Chernousova and M. Epple, Angew. Chem. Int. Ed. 52, 1636 (2013).

    CAS  Google Scholar 

  13. A.J. Haes and R.P.V. Duyne, Expert Rev. Mol. Diagn. 4, 527 (2004).

    CAS  Google Scholar 

  14. M.U. Rashid, M.K.H. Bhuiyan, and M.E. Quayum, Dhaka Univ. J. Pharm. Sci. 12, 29 (2013).

    Google Scholar 

  15. G. Zhou and W. Wang, Orient. J. Chem. 28, 651 (2012).

    CAS  Google Scholar 

  16. S. Gurunathan, J.H. Park, J.W. Han, and J.-H. Kim, Int. J. Nanomed. 10, 4203 (2015).

    CAS  Google Scholar 

  17. H. Karimi, S. Mousavi, and B. Sadeghian, Indian J. Sci. Technol. 5, 2346 (2012).

    CAS  Google Scholar 

  18. W. Meng, F. Hu, X. Jiang, and L. Lu, Nanoscale Res. Lett. 10, 34 (2015).

    Google Scholar 

  19. J. Zhao, A. Das, G.C. Schatz, S.G. Sligar, and R.P.V. Duyne, J. Phys. Chem. C 112, 13084 (2008).

    CAS  Google Scholar 

  20. A.J. Haes, L. Chang, W.L. Klein, and R.P.V. Duyne, J. Am. Chem. Soc. 127, 2264 (2005).

    CAS  Google Scholar 

  21. A.D. McFarland and R.P.V. Duyne, Nano Lett. 3, 1057 (2003).

    CAS  Google Scholar 

  22. W.E. Doering, M.E. Piotti, M.J. Natan, and R.G. Freeman, Adv. Mater. 19, 3100 (2007).

    CAS  Google Scholar 

  23. R.A. Shelby, D.R. Smith, and S. Schultz, Sci. 292, 77 (2001).

    CAS  Google Scholar 

  24. C. Burda, X. Chen, R. Narayanan, and M.A. El-Sayed, Chem. Rev. 105, 1025 (2005).

    CAS  Google Scholar 

  25. M. Maillard, P. Huang, and L. Brus, Nano Lett. 3, 1611 (2003).

    CAS  Google Scholar 

  26. B. Nikoobakht and M.A. El-Sayed, Chem. Mater. 15, 1957 (2003).

    CAS  Google Scholar 

  27. H. Mao, J. Feng, X. Ma, C. Wu, and X. Zhao, J. Nanopart. Res. 14, 887 (2012).

    Google Scholar 

  28. C. Xue and C.A. Mirkin, Angew. Chem. Int. Ed. 46, 2036 (2007).

    CAS  Google Scholar 

  29. H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, and G.Q. Xu, Langmuir 12, 909 (1996).

    CAS  Google Scholar 

  30. J. Zhou, J. An, B. Tang, S. Xu, Y. Cao, B. Zhao, W. Xu, J. Chang, and J.R. Lombardi, Langmuir 24, 10407 (2008).

    CAS  Google Scholar 

  31. Q. Zhang, W. Li, L.-P. Wen, J. Chen, and Y. Xia, Chem. A Eur. J. 16, 10234 (2010).

    CAS  Google Scholar 

  32. A. Tao, P. Sinsermsuksakul, and P. Yang, Angew. Chem. Int. Ed. 46, 4597 (2006).

    Google Scholar 

  33. B. Pietrobon, M. McEachran, and V. Kitaev, ACS Nano 3, 21 (2009).

    CAS  Google Scholar 

  34. I. Pastoriza-Santos and L.M. Liz-Marzan, Nano Lett. 2, 903 (2002).

    CAS  Google Scholar 

  35. S. Chen and D.L. Carroll, Nano Lett. 2, 1003 (2002).

    CAS  Google Scholar 

  36. R. Jin, Y. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, and J.G. Zheng, Science 294, 1901 (2001).

    CAS  Google Scholar 

  37. Z. Xuanmin, M. Xiao, C. Haimei, T. Haizheng, and Z. Xiujian, J. Wuhan Univ. Technol. Mater. Sci. Ed. 29, 40 (2014).

    Google Scholar 

  38. B. Tang, S. Xu, X. Hou, J. Li, L. Sun, W. Xu, X. Wang, and A.C.S. Appl, Mater. Interfaces 5, 646 (2013).

    CAS  Google Scholar 

  39. P.E. Cardoso-Avila, J.L. Pichardo-Molina, C.M. Krishna, and R. Castro-Beltran, J. Nanopart. Res. 17, 160 (2015).

    Google Scholar 

  40. T. Gao, Y. Wang, K. Wang, X. Zhang, J. Dui, G. Li, S. Lou, S. Zhou, and A.C.S. Appl, Mater. Interfaces 5, 7308 (2013).

    CAS  Google Scholar 

  41. Z.-P. Cheng, X.-Z. Chu, X.-Q. Wu, J.-M. Xu, H. Zhong, and J.-Z. Yin, Rare Met. 36, 799 (2017).

    CAS  Google Scholar 

  42. K.H. Sodha, J.K. Jadav, H.P. Gajera, and K.J. Rathod, Int. J. Phar. Bio Sci. 6, 199 (2015).

    CAS  Google Scholar 

  43. J. Zhang, M.R. Langille, and C.A. Mirkin, J. Am. Chem. Soc. 132, 12502 (2010).

    CAS  Google Scholar 

  44. J. Junaidi, K. Triyana, H. Sosiati, E. Suharyadi, and H. Harsojo, Adv. Mater. Res. 1123, 256 (2015).

    Google Scholar 

  45. Y. Wang, T. Gao, K. Wang, X. Wu, X. Shi, Y. Liu, S. Lou, and S. Zhou, Nanoscale 4, 7121 (2012).

    CAS  Google Scholar 

  46. X.H. Vu, T.T.T. Duong, T.T.H. Pham, D.K. Trinh, X.H. Nguyen, and V.S. Dang, Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 025019 (2018).

    Google Scholar 

  47. S.-W. Lee, S.-H. Chang, Y.-S. Lai, C.-C. Lin, C.-M. Tsai, Y.-C. Lee, J.-C. Chen, and C.-L. Huang, Materials 7, 7781 (2014).

    Google Scholar 

  48. H. Lu, H. Zhang, X. Yu, S. Zeng, K.-T. Yong, and H.-P. Ho, Plasmonics 7, 167 (2012).

    CAS  Google Scholar 

  49. L. Du, Q. Xu, M. Huang, L. Xian, and J.-X. Feng, Mater. Chem. Phys. 160, 40 (2015).

    CAS  Google Scholar 

  50. K.G. Stamplecoskie and J.C. Scaiano, J. Am. Chem. Soc. 132, 1825 (2010).

    CAS  Google Scholar 

  51. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Berlin: Springer, 1995).

    Google Scholar 

  52. E. Hao, G.C. Schatz, and J.T. Hupp, J. Fluoresc. 14, 331 (2004).

    CAS  Google Scholar 

  53. S.K. Balavandy, K. Shameli, D.R.B.A. Biak, and Z.Z. Abidin, Chem. Cent. J. 8, 11 (2014).

    Google Scholar 

  54. X. Zheng, X. Zhao, D. Guo, B. Tang, S. Xu, B. Zhao, W. Xu, and J.R. Lombardi, Langmuir 25, 3802 (2009).

    CAS  Google Scholar 

  55. C. Xue, G.S. Metraux, J.E. Millstone, and C.A. Mirkin, J. Am. Chem. Soc. 130, 8337 (2008).

    CAS  Google Scholar 

  56. I. Pastoriza-Santos and L.M. Liz-Marzan, J. Mater. Chem. 18, 1724 (2008).

    CAS  Google Scholar 

  57. J.L. Elechiguerra, J. Reyes-Gasga, and M.J. Yacaman, J. Mater. Chem. 16, 3906 (2006).

    CAS  Google Scholar 

  58. Y. Xiong, I. Washio, J. Chen, M. Sadilek, and Y. Xia, Angew. Chem. Int. Ed. 46, 4917 (2007).

    CAS  Google Scholar 

  59. C. Zhang, S.Z. Jiang, C. Yang, C.H. Li, Y.Y. Huo, X.Y. Liu, A.H. Liu, Q. Wei, S.S. Gao, X.G. Gao, and B.Y. Man, Sci. Rep. 6, 25243 (2016).

    CAS  Google Scholar 

  60. S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H.-Y. Chen, Chem. Soc. Rev. 39, 4234 (2010).

    CAS  Google Scholar 

  61. J.P. Camden, J.A. Dieringer, J. Zhao, and R.P.V. Duyne, Acc. Chem. Res. 41, 1653 (2008).

    CAS  Google Scholar 

  62. D. Graham and R. Goodacre, Chem. Soc. Rev. 37, 883 (2008).

    CAS  Google Scholar 

  63. C. Zhang, S.Z. Jiang, Y.Y. Huo, A.H. Liu, S.C. Xu, X.Y. Liu, Z.C. Sun, Y.Y. Xu, Z. Li, and B.Y. Man, Opt. Express 23, 24811 (2015).

    CAS  Google Scholar 

  64. Y.Q. Wang, S. Ma, Q.Q. Yang, and X.J. Li, Appl. Surf. Sci. 259, 5881 (2012).

    Google Scholar 

  65. E. Hao and G.C. Schatz, J. Chem. Phys. 120, 357 (2004).

    CAS  Google Scholar 

  66. L.-C. Yang, Y.-S. Lai, C.-M. Tsai, Y.-T. Kong, C.-I. Lee, and C.-L. Huang, J. Phys. Chem. C 116, 24292 (2012).

    CAS  Google Scholar 

  67. S. Nie and S.R. Emory, Science 275, 1102 (1997).

    CAS  Google Scholar 

  68. S.D. Solomon, M. Bahadory, A.V. Jeyarajasingam, S.A. Rutkowsky, C. Boritz, and L. Mulfinger, J. Chem. Educ. 48, 322 (2007).

    Google Scholar 

  69. L. He, J. Huang, T. Xu, L. Chen, K. Zhang, S. Han, Y. He, and S.T. Lee, J. Mater. Chem. 22, 1370 (2012).

    CAS  Google Scholar 

  70. B. Zhang, P. Xu, X. Xie, H. Wei, Z. Li, N.H. Mack, X. Han, H. Xu, and H.-L. Wang, J. Mater. Chem. 21, 2495 (2011).

    CAS  Google Scholar 

  71. D. Kim, S. Jeong, and J. Moon, Nanotechnology 17, 4019 (2006).

    CAS  Google Scholar 

  72. Z. Zhang, B. Zhao, and L. Hu, J. Solid State Chem. 121, 105 (1996).

    CAS  Google Scholar 

  73. Z. Deng, M. Mansuipur, and A.J. Muscat, J. Phys. Chem. C 113, 867 (2009).

    CAS  Google Scholar 

  74. B. Tang, J. An, X. Zheng, S. Xu, D. Li, J. Zhou, B. Zhao, and W. Xu, J. Phys. Chem. C 112, 18361 (2008).

    CAS  Google Scholar 

  75. Q. Zhang, J. Ge, T. Pham, J. Goebl, Y. Hu, Z. Lu, and Y. Yin, Angew. Chem. Int. Ed. 48, 3516 (2009).

    CAS  Google Scholar 

  76. J.E. Millstone, G.S. Metraux, and C.A. Mirkin, Adv. Funct. Mater. 16, 1209 (2006).

    CAS  Google Scholar 

  77. Q. Zeng, X. Jiang, A. Yu, and G.M. Lu, Nanotechnology 18, 035708 (2007).

    Google Scholar 

  78. X. Jiang, W. Chen, C. Chen, S. Xiong, and A. Yu, Nanoscale Res. Lett. 6, 32 (2011).

    CAS  Google Scholar 

  79. Z. Zaheer, Colloids Surf. B Biointerfaces 90, 48 (2012).

    CAS  Google Scholar 

  80. V. Bastys, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, R. Vaisnoras, and L.M. Liz-Marzan, Adv. Funct. Mater. 16, 766 (2006).

    CAS  Google Scholar 

  81. J. Bonsak, Chemical synthesis of silver nanoparticles for light trapping applications in silicon solar cells, Master Thesis in Materials Physics, University of Oslo, Norway (2010).

  82. U. Kreibig and C.V. Fragstein, Z. Phys. 224, 307 (1969).

    CAS  Google Scholar 

  83. H. Wang, X. Zheng, J. Chen, D. Wang, Q. Wang, T. Xue, C. Liu, Z. Jin, X. Cui, and W. Zheng, J. Phys. Chem. C 116, 24268 (2012).

    CAS  Google Scholar 

  84. J. Nelayah, M. Kociak, O. Stephan, F.J.G.D. Abajo, M. Tence, L. Henrard, D. Taverna, I. Pastoriza-Santos, L.M. Liz-Marzan, and C. Colliex, Nat. Phys. 3, 348 (2007).

    CAS  Google Scholar 

  85. K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    CAS  Google Scholar 

  86. G.A. Martinez-Castanon, N. Nino-Martinez, F. Martinez-Gutierrez, J.R. Martinez-Mendoza, and F. Ruiz, J. Nanopart. Res. 10, 1343 (2008).

    CAS  Google Scholar 

  87. S. Pal, Y.K. Tak, and J.M. Song, Appl. Environ. Microbiol. 73, 1712 (2007).

    CAS  Google Scholar 

  88. I.O. Sosa, C. Noguez, and R.G. Barrera, J. Phys. Chem. B 107, 6269 (2003).

    CAS  Google Scholar 

  89. P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, and M. Saravanan, Colloids Surf. B Biointerfaces 108, 255 (2013).

    CAS  Google Scholar 

  90. J.-Y. Lin, Y.-L. Hsueh, and J.-J. Huang, J. Solid State Chem. 214, 2 (2014).

    CAS  Google Scholar 

  91. M.R. Johan, N.A.K. Aznan, S.T. Yee, I.H. Ho, S.W. Ooi, N.D. Singho, and F. Aplop, J. Nanomater. 2014, 105454 (2014).

    Google Scholar 

  92. J.W. Han, S. Gurunathan, J.-K. Jeong, Y.-J. Choi, D.-N. Kwon, J.-K. Park, and J.-H. Kim, Nanoscale Res. Lett. 9, 459 (2014).

    Google Scholar 

  93. J. Du, B. Han, Z. Liu, Y. Liu, and D.J. Kang, Cryst. Growth Des. 7, 900 (2007).

    CAS  Google Scholar 

  94. T.C.R. Rocha and D. Zanchet, J. Nanosci. Nanotechnol. 7, 618 (2007).

    CAS  Google Scholar 

  95. T.C.R. Rocha, H. Winnischofer, E. Westphal, and D. Zanchet, J. Phys. Chem. C 111, 2885 (2007).

    CAS  Google Scholar 

  96. T.C.R. Rocha and D. Zanchet, J. Phys. Chem. C 111, 6889 (2007).

    Google Scholar 

  97. C. Lofton and W. Sigmund, Adv. Funct. Mater. 15, 1197 (2005).

    CAS  Google Scholar 

  98. R. Jin, C. Cao, E. Hao, G.S. Metraux, G.C. Schatz, and C.A. Mirkin, Nature 425, 487 (2003).

    CAS  Google Scholar 

  99. A.M. Junior, H.P.M.D. Oliveira, and M.H. Gehlen, Photochem. Photobiol. Sci. 2, 921 (2003).

    Google Scholar 

  100. I. Pastoriza-Santos and L.M. Liz-Marzan, Langmuir 18, 2888 (2002).

    CAS  Google Scholar 

  101. L.-P. Jiang, S. Xu, J.-M. Zhu, J.-R. Zhang, J.-J. Zhu, and H.-Y. Chen, Inorg. Chem. 43, 5877 (2004).

    CAS  Google Scholar 

  102. Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, J. Am. Chem. Soc. 133, 18931 (2011).

    CAS  Google Scholar 

  103. Y. Sun and Y. Xia, Adv. Mater. 15, 695 (2003).

    CAS  Google Scholar 

  104. X. Zheng, W. Xu, C. Corredor, S. Xu, J. An, B. Zhao, and J.R. Lombardi, J. Phys. Chem. C 111, 14962 (2007).

    CAS  Google Scholar 

  105. B. Pietrobon and V. Kitaev, Chem. Mater. 20, 5186 (2008).

    CAS  Google Scholar 

  106. C.L. Haynes and R.P.V. Duyne, J. Phys. Chem. B 107, 7426 (2003).

    CAS  Google Scholar 

  107. J. Zhang, X. Li, X. Sun, and Y. Li, J. Phys. Chem. B 109, 12544 (2005).

    CAS  Google Scholar 

  108. Y. Yang, S. Matsubara, L. Xiong, T. Hayakawa, and M. Nogami, J. Phys. Chem. C 111, 9095 (2007).

    CAS  Google Scholar 

  109. C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, J. Mater. Chem. 22, 2271 (2012).

    CAS  Google Scholar 

  110. D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G. Kino, and W.E. Moerner, Nano Lett. 4, 957 (2004).

    CAS  Google Scholar 

  111. H. Ko, S. Singamaneni, and V.V. Tsukruk, Small 4, 1576 (2008).

    CAS  Google Scholar 

  112. M.T.T. Nguyen, D.H. Nguyen, M.T. Pham, H.V. Pham, and C.D. Huynh, J. Electron. Mater. 48, 4970 (2019).

    CAS  Google Scholar 

  113. S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, J. Phys. Chem. Lett. 4, 496 (2013).

    CAS  Google Scholar 

  114. P. Hildebrandt and M. Stockburger, J. Phys. Chem. 88, 5935 (1984).

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Project of the Ministry of Education and Training (MOET) of Vietnam under grant number B2019-TNA-02.VL. The authors would like to thank Dr. Tran Trong Nghia (Institute of Physics, Vietnam Academy of Science and Technology) for support in SERS spectra measurement. We acknowledge that there was no financial interest or benefit arising in the application of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Hoa Vu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, T.T.H., Dien, N.D., Vu, X.H. et al. Synthesis and In-Depth Study of the Mechanism of Silver Nanoplate and Nanodecahedra Growth by LED Irradiation for SERS Application. J. Electron. Mater. 49, 5009–5027 (2020). https://doi.org/10.1007/s11664-020-08240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08240-5

Keywords

Navigation