Skip to main content
Log in

The 2012 Flash Drought Threatened US Midwest Agroecosystems

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

In the summer of 2012, the US Midwest, the most productive agricultural region in the world, experienced the most intense and widespread drought on record for the past hundred years. The 2012 drought, characterized as ‘flash drought’, developed in May with a rapid intensification afterwards, and peaked in mid-July. ~76% of crop region and 60% of grassland and pasture regions have been under moderate to severe dry conditions. This study used multiple lines of evidences, i.e., in-situ AmeriFlux measurements, spatial satellite observations, and scaled ecosystem modeling, to provide independent and complementary analysis on the impact of 2012 flash drought on the US Midwest vegetation greenness and photosynthesis carbon uptake. Three datasets consistently showed that 1) phenological activities of all biomes advanced 1–2 weeks earlier in 2012 compared to the other years of 2010-2014; 2) the drought had a more severe impact on agroecosystems (crop and grassland) than on forests; 3) the growth of crop and grassland was suppressed from June with significant reduction of vegetation index, sun-induced fluorescence (SIF) and gross primary production (GPP), and did not recover until the end of growing season. The modeling results showed that regional total GPP in 2012 was the lowest (1.76 Pg C/yr) during 2010–2014, and decreased by 63 Tg C compared with the other-year mean. Agroecosystems, accounting for 84% of regional GPP assimilation, were the most impacted by 2012 drought with total GPP reduction of 9%, 7%, 6%, and 29% for maize, soybean, cropland, and grassland, respectively. The frequency and severity of droughts have been predicted to increase in future. The results imply the importance to investigate the influences of flash droughts on vegetation productivity and terrestrial carbon cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asner G P, Alencar A, 2010. Drought impacts on the amazon forest: the remote sensing perspective. New Phytologist, 187(3): 569–578. doi: 10.1111/j.1469-8137.2010.03310.x

    Google Scholar 

  • Basara J B, Maybourn J N, Peirano C M et al., 2013. Drought and associated impacts in the great plains of the United States—a review. International Journal of Geosciences, 4(6B): 72–81. doi: 10.4236/ijg.2013.46A2009

    Google Scholar 

  • Bigler C, Gavin D G, Gunning C et al., 2007. Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos, 116(12): 1983–1994. doi: 10.1111/j.2007.0030-1299.16034.x

    Google Scholar 

  • Boryan C, Yang Z W, Mueller R et al., 2011. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto International, 26(5): 341–358. doi: 10.1080/10106049.2011.562309

    Google Scholar 

  • Boyer J S, Byrne P, Cassman K G et al., 2013. The U.S. drought of 2012 in perspective: a call to action. Global Food Security, 2(3): 139–143. doi: 10.1016/j.gfs.2013.08.002

    Google Scholar 

  • Breshears D D, Cobb N S, Rich P M et al., 2005. Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 102(42): 15144–15148. doi: 10.1073/pnas.0505734102

    Google Scholar 

  • Chen T, van der Werf G R, Gobron N et al., 2014. Global cropland monthly gross primary production in the year 2000. Biogeosciences, 11(14): 3871–3880. doi: 10.5194/bg-11-3871-2014

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058): 529–533. doi: 10.1038/nature03972

    Google Scholar 

  • Cook B I, Ault T R, Smerdon J E, 2015. Unprecedented 21st century drought risk in the American Southwest and central plains. Science Advances, 1(1): e1400082. doi: 10.1126/sciadv.1400082

    Google Scholar 

  • Dai A G, 2011. Drought under global warming: a review. Wiley Interdisciplinary Reviews-Climate Change, 2(1): 45–65. doi: 10.1002/wcc.81

    Google Scholar 

  • Dai A G, 2013. Increasing drought under global warming in observations and models. Nature Climate Change, 3(1): 52–58. doi: 10.1038/nclimate1633

    Google Scholar 

  • Daly C, Taylor G H, Gibson W P et al., 2000. High-quality spatial climate data sets for the United States and beyond. Transactions of the ASAE, 43(6): 1957–1962. doi: 10.13031/2013.3101

    Google Scholar 

  • Dunn A L, Barford C C, Wofsy S C et al., 2007. A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Global Change Biology, 13(3): 577–590. doi: 10.1111/j.1365-2486.2006.01221.x

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N et al., 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1): 185–212. doi: 10.1051/agro:2008021

    Google Scholar 

  • Frank D, Reichstein M, Bahn M et al., 2015. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 21(8): 2861–2880. doi: 10.1111/gcb.12916

    Google Scholar 

  • Granier A, Reichstein M, Bréda N et al., 2007. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143(1–2): 123–145. doi: 10.1016/j.agrformet.2006.12.004

    Google Scholar 

  • Guanter L, Zhang Y G, Jung M et al., 2014. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 111(14): E1327–E1333. doi: 10.1073/pnas.1320008111

    Google Scholar 

  • Hoerling M, Eischeid J, Kumar A et al., 2014. Causes and predictability of the 2012 great plains drought. Bulletin of the American Meteorological Society, 95(2): 269–282. doi: 10.1175/BAMS-D-13-00055.1

    Google Scholar 

  • Ji L, Peters A J, 2003. Assessing vegetation response to drought in the northern great plains using vegetation and drought indices. Remote Sensing of Environment, 87(1): 85–98. doi: 10.1016/S0034-4257(03)00174-3

    Google Scholar 

  • Jin C, Xiao X M, Wagle P et al., 2015. Effects of in-situ and reanalysis climate data on estimation of cropland gross primary production using the vegetation photosynthesis model. Agricultural and Forest Meteorology, 213: 240–250. doi: 10.1016/j.agrformet.2015.07.003

    Google Scholar 

  • Jin Z N, Ainsworth E A, Leakey A D B et al., 2018. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US midwest. Global Change Biology, 24(2): e522–e533

    Google Scholar 

  • Joiner J, Guanter L, Lindstrot R et al., 2013. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectralresolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmospheric Measurement Techniques, 6(10): 2803–2823. doi: 10.5194/amt-6-2803-2013

    Google Scholar 

  • Kellner O, Niyogi D, 2014. Assessing drought vulnerability of agricultural production systems in context of the 2012 drought. Journal of Animal Science, 92(7): 2811–2822. doi: 10.2527/jas.2013-7496

    Google Scholar 

  • Kumar A, Chen M Y, Hoerling M et al., 2013. Do extreme climate events require extreme forcings? Geophysical Research Letters, 40(13): 3440–3445. doi: 10.1002/grl.50657

    Google Scholar 

  • Liu Y, Zhou Y, Ju W et al., 2014. Impacts of droughts on carbon sequestration by China’s terrestrial ecosystems from 2000 to 2011. Biogeosciences, 11(10): 2583–2599. doi: 10.5194/bg-11-2583-2014

    Google Scholar 

  • Lobell D B, Roberts M J, Schlenker W et al., 2014. Greater sensitivity to drought accompanies maize yield increase in the U.S. midwest. Science, 344(6183): 516–519. doi: 10.1126/science.1251423

    Google Scholar 

  • Mallya G, Zhao L, Song X C et al., 2013. 2012 midwest drought in the United States. Journal of Hydrologic Engineering, 18(7): 737–745. doi: 10.1061/(ASCE)HE.1943-5584.0000786

    Google Scholar 

  • McKee T B, Doesken N J, Kleist J, 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the Eighth Conference on Applied Climatology. Anaheim, California: AMS, 17–22.

    Google Scholar 

  • Mesinger F, DiMego G, Kalnay E et al., 2006. North American regional reanalysis. Bulletin of the American Meteorological Society, 87(3): 343–360. doi: 10.1175/BAMS-87-3-343

    Google Scholar 

  • Mo K C, Lettenmaier D P, 2016. Precipitation deficit flash droughts over the United States. Journal of Hydrometeorology, 17(4): 1169–1184. doi: 10.1175/JHM-D-15-0158.1

    Google Scholar 

  • Mueller N D, Butler E E, McKinnon K A et al., 2016. Cooling of US midwest summer temperature extremes from cropland intensification. Nature Climate Change, 6(3): 317–322. doi:10.1038/nclimate2825

    Google Scholar 

  • Naumann G, Alfieri L, Wyser K et al., 2018. Global changes in drought conditions under different levels of warming. Geophysical Research Letters, 45(7): 3285–3296. doi: 10.1002/2017GL076521

    Google Scholar 

  • Noormets A, Gavazzi M J, Mcnulty S G et al., 2010. Response of carbon fluxes to drought in a coastal plain loblolly pine forest. Global Change Biology, 16(1): 272–287. doi: 10.1111/j.1365-2486.2009.01928.x

    Google Scholar 

  • Otkin J A, Anderson M C, Hain C et al., 2013. Examining rapid onset drought development using the thermal infrared-based evaporative stress index. Journal of Hydrometeorology, 14(4): 1057–1074. doi: 10.1175/JHM-D-12-0144.1

    Google Scholar 

  • Otkin J A, Anderson M C, Hain C et al., 2016. Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agricultural and Forest Meteorology, 218–219: 230–242. doi: 10.1016/j.agrformet.2015.12.065

    Google Scholar 

  • Otkin J A, Svoboda M, Hunt E D et al., 2018. Flash droughts: a review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bulletin of the American Meteorological Society, 99(5): 911–919. doi: 10.1175/BAMS-D-17-0149.1

    Google Scholar 

  • Phillips O L, van der Heijden G, Lewis S L et al., 2010. Drought-mortality relationships for tropical forests. New Phytologist, 187(3): 631–646. doi: 10.1111/j.1469-8137.2010.03359.x

    Google Scholar 

  • Reddy A R, Chaitanya K V, Vivekanandan M, 2004. Droughtinduced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11): 1189–1202. doi: 10.1016/j.jplph.2004.01.013

    Google Scholar 

  • Reichstein M, Ciais P, Papale D et al., 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 13(3): 634–651. doi: 10.1111/j.1365-2486.2006.01224.x

    Google Scholar 

  • Reyer C P O, Leuzinger S, Rammig A et al., 2013. A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Global Change Biology, 19(1): 75–89. doi: 10.1111/gcb.12023

    Google Scholar 

  • Schaefer K, Schwalm C R, Williams C et al., 2012. A model-data comparison of gross primary productivity: results from the North American carbon program site synthesis. Journal of Geophysical Research-Biogeosciences, 117(G3): G03010. doi: 10.1029/2012JG001960

    Google Scholar 

  • Schwalm C R, Williams C A, Schaefer K et al., 2010. Assimilation exceeds respiration sensitivity to drought: a FLUXNET synthesis. Global Change Biology, 16(2): 657–670. doi: 10.1111/j.1365-2486.2009.01991.x

    Google Scholar 

  • Schwalm C R, Williams C A, Schaefer K et al., 2012. Reduction in carbon uptake during turn of the century drought in western North America. Nature Geoscience, 5(8): 551–556. doi: 10.1038/ngeo1529

    Google Scholar 

  • Sitch S, Huntingford C, Gedney N et al., 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9): 2015–2039. doi: 10.1111/j.1365-2486.2008.01626.x

    Google Scholar 

  • Svoboda M, LeComte D, Hayes M et al., 2002. The drought monitor. Bulletin of the American Meteorological Society, 83(8): 1181–1190. doi: 10.1175/1520-0477-83.8.1181

    Google Scholar 

  • van der Molen M K, Dolman A J, Ciais P et al., 2011. Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology, 151(7): 765–773. doi: 10.1016/j.agrformet.2011.01.018

    Google Scholar 

  • Vicente-Serrano S M, 2007. Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region. Natural Hazards, 40(1): 173–208. doi: 10.1007/s11069-006-0009-7

    Google Scholar 

  • Wehner M, Easterling D R, Lawrimore J H et al., 2011. Projections of future drought in the continental united states and mexico. Journal of Hydrometeorology, 12(6): 1359–1377. doi: 10.1175/2011JHM1351.1

    Google Scholar 

  • Williams I N, Torn M S, Riley W J et al., 2014. Impacts of climate extremes on gross primary production under global warming. Environmental Research Letters, 9(9): 101002. doi: 10.1088/1748-9326/9/9/094011

    Google Scholar 

  • Wolf S, Eugster W, Ammann C et al., 2013. Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland. Environmental Research Letters, 8(3): 089501. doi: 10.1088/1748-9326/8/3/035007

    Google Scholar 

  • Wuebbles D, Meehl G, Hayhoe K et al., 2014. CMIP5 climate model analyses: climate extremes in the United States. Bulletin of the American Meteorological Society, 95(4): 571–583. doi: 10.1175/BAMS-D-12-00172.1

    Google Scholar 

  • Xiao X M, Hollinger D, Aber J et al., 2004a. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 89(4): 519–534. doi: 10.1016/j.rse.2003.11.008

    Google Scholar 

  • Xiao X M, Zhang Q Y, Braswell B et al., 2004b. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment, 91(2): 256–270. doi: 10.1016/j.rse.2004.03.010

    Google Scholar 

  • Xin Q C, Broich M, Suyker A E et al., 2015. Multi-scale evaluation of light use efficiency in MODIS gross primary productivity for croplands in the midwestern United States. Agricultural and Forest Meteorology, 201: 111–119. doi: 10.1016/j.agrformet.2014.11.004

    Google Scholar 

  • Zeng N, Zhao F, Collatz G J et al., 2014. Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature, 515(7527): 394–397. doi: 10.1038/nature13893

    Google Scholar 

  • Zhang L, Xiao J F, Li J et al., 2012. The 2010 spring drought reduced primary productivity in southwestern China. Environmental Research Letters, 7(4): 045706. doi: 10.1088/1748-9326/7/4/045706

    Google Scholar 

  • Zhang Y G, Guanter L, Berry J A et al., 2014. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. Global Change Biology, 20(12): 3727–3742. doi: 10.1111/gcb.12664

    Google Scholar 

  • Zhang Y, Xiao X M, Jin C et al., 2016. Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. Remote Sensing of Environment, 183: 154–169. doi: 10.1016/j.rse.2016.05.015

    Google Scholar 

  • Zhang Y Q, Yu Q, Jiang J et al., 2008. Calibration of Terra/ MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau. Global Change Biology, 14(4): 757–767. doi: 10.1111/j.1365-2486.2008.01538.x

    Google Scholar 

  • Zhao M S, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994): 940–943. doi: 10.1126/science.1192666

    Google Scholar 

  • Zscheischler J, Mahecha M D, von Buttlar J et al., 2014. A few extreme events dominate global interannual variability in gross primary production. Environmental Research Letters, 9(3): 035001. doi: 10.1088/1748-9326/9/3/035001

    Google Scholar 

Download references

Acknowledgement

We would like to thank the FLUXNET for sharing eddy covariance data, and Ms. Yajun Bao for editing figures and tables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyu Zhao.

Additional information

Foundation item: Under the auspices of the National Natural Science Foundation of China (No. 41801340), Natural Science Foundation of Liaoning, China (No. 20180550238), the Key Research Program of Frontier Sciences by Chinese Academy of Sciences (No. QYZDB-SSW-DQC005)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Luo, X., Xiao, X. et al. The 2012 Flash Drought Threatened US Midwest Agroecosystems. Chin. Geogr. Sci. 29, 768–783 (2019). https://doi.org/10.1007/s11769-019-1066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-019-1066-7

Keywords

Navigation