Skip to main content
Log in

Effects of drought on net primary productivity: Roles of temperature, drought intensity, and duration

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Northeast China has experienced frequent droughts over the past fifteen years. However, the effects of droughts on net primary productivity (NPP) in Northeast China remain unclear. In this paper, the droughts that occurred in Northeast China between 1999 and 2013 were identified using the Standardized Precipitation Evapotranspiration Index (SPEI). The NPP standardized anomaly index (NPP-SAI) was used to evaluate NPP anomalies. The years of 1999, 2000, 2001, and 2007 were further investigated in order to explore the influence of droughts on NPP at different time scales (3, 6, and 12 months). Based on the NPP-SAI of normal areas, we found droughts overall decreased NPP by 112.06 Tg C between 1999 and 2013. Lower temperatures at the beginning of the growing season could cause declines in NPP by shortening the length of the growing season. Mild drought or short-term drought with higher temperatures might increase NPP, and weak intensity droughts intensified the lag effects of droughts on NPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen C D, Macalady A K, Chenchouni H et al., 2010. A global overview of drought and heat induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4): 660–684. doi: 10.1016/j.foreco.2009.09. 001

    Article  Google Scholar 

  • Angert A, Biraud S, Bonfils C et al., 2005. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proceedings of the National Academy of Sciences of the United States of America, 102(31): 10823–10827. doi: 10.1073/pnas. 0501647102

    Article  Google Scholar 

  • Bousquet P, Ciais P, Peylin P et al., 1999. Inverse modeling of annual atmospheric CO2 sources and sinks I. Method and control inversion. Journal of Geophysical Research-atmospheres, 104(D21): 175–193. doi: 10.1029/1999JD900342

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al., 2005. Europewide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058): 529–533. doi: 10.1038/nature03972

    Article  Google Scholar 

  • Cramer W, Bondeau A, Woodward, F I et al., 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7(4): 357–373. doi: 10.1046/j.1365-2486.2001.00383.x

    Article  Google Scholar 

  • Gilgen A K, Buchmann N, 2009. Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation. Biogeosciences, 6(3): 5217–5250. doi: 10.5194/bg-6-2525-2009

    Article  Google Scholar 

  • Hamon W R, 1961. Estimating potential evapotranspiration. Journal of Hydraulics Division, Proceedings of the American Society of Civil Engineers, 87(3): 107–120. doi: 10.1061/JYCEAJ.0000539

    Google Scholar 

  • Hanson P J, Weltzin J F, 2000. Drought disturbance from climate change: response of United States forests. Science of the Total Environment, 262(3): 205–220. doi: 10.1016/S0048-9697(00)00523-4

    Article  Google Scholar 

  • Huang K, Wang S, Zhou L et al., 2013. Effects of drought and ice rain on potential productivity of a subtropical coniferous plantation from 2003 to 2010 based on eddy covariance flux observation. Environmental Research Letters, 8(3): 035021. doi: 10.1088/1748-9326/8/3/035021

    Article  Google Scholar 

  • Hutchinson M F, 1991. The Application of Thin Plate Smoothing Splines to Continent-wide Data Assimilation. BMRC Research Report No. 27, Data Assimilation Systems, Bureau of Meteorology, Melbourne, 104–113.

    Google Scholar 

  • Imhoff M L, Bounoua L, DeFries R et al., 2004. The consequences of urban land transformation on net primary productivity in the United States. Remote Sensing and Environment, 89(4): 434–43. doi: 10.1016/j.rse.2003.10.015

    Article  Google Scholar 

  • Jeong D I, Sushama L, Khaliq M N, 2014. The role of temperature in drought projections over North America. Climatic Change, 127(2): 289–303. doi: 10.1007/s10584-014-1248-3

    Article  Google Scholar 

  • Ji L, Peters A J, 2003. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing and Environment, 87(1): 85–98. doi: 10.1016/S0034-4257(03)00174-3

    Article  Google Scholar 

  • Li Peng, Wang Yubin, Tan Xiangyong, 2006. Grain production and trade analysis in Northeast China. Journal of China Agricultural University (Social Sciences Edition), 62(1): 57–62. (in Chinese)

    Google Scholar 

  • Liang L, Li L, Liu Q, 2011. Precipitation variability in Northeast China from 1961 to 2008. Journal of Hydrology, 404(1–2): 67–76. doi: 10.1016/j.jhydrol.2011.04.020

    Article  Google Scholar 

  • Liu Y, Zhou Y, Ju W et al., 2014. Impacts of droughts on carbon sequestration by China’s terrestrial ecosystems from 2000 to 2011. Biogeosciences, 11: 2583–2599. doi: 10.5194/bg-11-2583-2014

    Article  Google Scholar 

  • Lotsch A, Fried M A, Anderson B T et al., 2003. Coupled vegetation-precipitation variability observed from satellite and climate records. Geophysical Research Letters, 30(14): 125–132. doi: 10.1029/2003GL017506

    Article  Google Scholar 

  • Lucht W, Prentice I C, Myneni R B et al., 2002. Climatic control of the highlatitude vegetation greening trend and Pinatubo effect. Science, 296(5573): 1687–1689. doi: 10.1126/science.1071828

    Article  Google Scholar 

  • Ma Z, Peng C, Zhu Q et al., 2012. Regional drought-induced reduction in the biomass carbon sink of Canada’ boreal forests. Proceedings of the National Academy of Sciences of the United States of America, 109(7): 2423–2427. doi: 10.1073/pnas.1111576109

    Article  Google Scholar 

  • Mohammat A X, Wang X, Xu X T et al., 2012. Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agricultural and Forest Meteorology, 178: 21–30. doi: 10.1016/j.agrformet.2012.09.014

    Google Scholar 

  • Ni J, Zhang X S, Scurlock, J M O, 2001. Synthesis and analysis of biomass and net primary productivity in Chinese forests. Annals of Forest Science, 58(4): 351–384. doi: 10.1051/forest:2001131

    Article  Google Scholar 

  • Noormets A, McNulty S G, DeForest J L et al., 2008. Drought during canopy development has lasting effect on annual carbon balance in a deciduous temperate forest. New Phytologist, 179(3): 818–828. doi: 10.1111/j.1469-8137.2008.02501.x

    Article  Google Scholar 

  • Pantuwan G, Fukai S, Cooper M et al., 2002. Yield Response of Rice (Oryza Sativa L.) Genotypes to different types of drought under rainfed lowlands: part 1. Grain yield and yield components. Field Crops Research, 73(2–3): 153–168. doi: 10.1016/S0378-4290(01)00187-3

    Article  Google Scholar 

  • Park H S, Sohn B J, 2010. Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations. Journal of Geophysical Research-Atmospheres, 115 (D14): D14101. doi: 10.1029/2009JD012752

    Article  Google Scholar 

  • Parry M, Canziani OF, Palutikof J et al., 2007). Climate Change 2007. Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pei F, Li X, Liu X et al., 2013. Assessing the impacts of droughts on net primary productivity in China. Journal of Environmental Management, 114(15): 362–371. doi: 10.1016/j.jenvman.2012.10.031

    Article  Google Scholar 

  • Peng C H, Michael J, 1999. Modelling the response of net primary productivity (NPP) of boreal forest ecosystems to changes in climate and fire disturbance regimes. Ecological Modelling, 122(3): 175–193. doi: 10.1016/S0304-3800(99)00137-4

    Article  Google Scholar 

  • Peng C, Ma Z, Lei X et al., 2011. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change, 1: 467–471. doi: 10.1038/nclimate1293

    Article  Google Scholar 

  • Piao S, Mohammat A, Fang J et al., 2006. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environmental Change, 16(4): 340–348. doi: 10.1016/j.gloenvcha.2006.02.002

    Article  Google Scholar 

  • Piao S, Wang X, Ciais P et al., 2011. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 17(10): 3228–3239. doi: 10.1111/j.1365-2486.2011.02419.x

    Article  Google Scholar 

  • Potter C, Randerson J T, Field C B et al., 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles, 7(4): 811–841. doi: 10.1029/93GB02725

    Article  Google Scholar 

  • Rahman H, Dedieu G, 1994. SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. International Journal of Remote Sensing, 15(1): 123–143. doi: 0.1080/01431169408954055

    Article  Google Scholar 

  • Tao J, Zhang Y J, Yuan X Y et al., 2013. Analysis of forest fires in Northeast China from 2003 to 2011. International Journal of Remote Sensing, 34(22): 8235–8251. doi: 10.1080/01431161.2013.837229

    Article  Google Scholar 

  • Vander Molen, Dolman M K, Ciais A J et al., 2011. Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology, 151(7): 765–773. doi: 10.1016/j.agrformet.2011.01.018

    Article  Google Scholar 

  • Vicente-Serrano S M, Santiago B, Juan I L, 2010. A Multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index SPEI. Journal of Climate, 23(7): 1696–1718. doi: http://dx. doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Wang C, Gower S T, Wang Y et al., 2001. The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Global Change Biology, 7(6): 719–730. doi: 10.1046/j.1354-1013.2001.00441.x

    Article  Google Scholar 

  • Westerling A L, Hidalgo H G, Cayan D R et al., 2006. Warming and earlier spring increase western US Forest wildfire activity. Science, 313(5789): 940–943. doi: 10.1126/science.1128834

    Article  Google Scholar 

  • Wilhite, D A, 2000. Drought as a Natural Hazard: Concepts and Definitions. Drought, a Global ssessment, Routledge Publishers, London, 3–18.

    Google Scholar 

  • Wu Z W, He H S, Yang J et al., 2014. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China. Science of the Total Environment, 493(15): 472–480. doi: 10.1016/j.scitotenv.2014.06.011

    Article  Google Scholar 

  • Xiao J, Zhuang Q, Liang E et al., 2009. Twentieth-century droughts and their impacts on terrestrial carbon cycling in China. Earth Interactions, 13(10): 1–31. doi: 10.1175/2009EI275.1

    Article  Google Scholar 

  • Ye D Z, 1994. China’s Global Change Research Advance (Part II). Seismological Press, Beijing. (in Chinese).

    Google Scholar 

  • Yu D Y, Shao H B, Shi P J et al., 2009. How does the conversion of land cover to urban use affect net primary productivity? A case study in Shenzhen City, China. Agricultural and Forest Meteorology, 149(11): 2054–2060. doi: 10.1016/j.agrformet.2009.07.012

    Article  Google Scholar 

  • Zhang B H, Zhang L, Guo H D et al., 2014. Drought impact on vegetation productivity in the Lower Mekong Basin. International Journal of Remote Sensing, 35(8): 2835–2856. doi: 10.1080/01431161.2014.890298

    Article  Google Scholar 

  • Zhang X, Goldberg M, Tarpley D et al., 2010. Drought-induced vegetation stress in southwestern North America. Environmental Research Letters, 5(2): 024008. doi: 10.1088/1748-9326/5/2/024008

    Article  Google Scholar 

  • Zhao M, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994): 940–943. doi: 10.1126/science.1192666

    Article  Google Scholar 

  • Zhou J, Zhang Z, Sun G et al., 2013. Response of ecosystem carbon fluxes to drought events in a poplar plantation in northern China. Forest Ecology and Management, 300: 33–44. doi: 10.1016/j.foreco.2013.01.007

    Article  Google Scholar 

  • Zhou L M, Tucker C J, Kaufmann, R K et al., 2001. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research-atmospheres, 106(D17): 20069–20083. doi: 10.1029/2000JD000115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoke Wang.

Additional information

Foundation item: Under the auspices of Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change Between 2000 and 2010 (No. STSN-09-03)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Zhao, H. & Wang, X. Effects of drought on net primary productivity: Roles of temperature, drought intensity, and duration. Chin. Geogr. Sci. 26, 270–282 (2016). https://doi.org/10.1007/s11769-016-0804-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-016-0804-3

Keywords

Navigation