Skip to main content
Log in

On transitioning from PID to ADRC in thermal power plants

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This paper focuses on the recent progress in the adoption of active disturbance rejection control (ADRC) in thermal processes as a viable alternative to proportional–integral–derivative (PID), especially in coal-fired power plants. The profound interpretation of this paradigm shift, with backward compatibility, is discussed in detail. A few fundamental issues associated with ADRC’s applications in thermal processes are discussed, such as implementation, tuning, and the structural changes. Examples and case studies are presented, encompassing coal-fired power plants, gas turbines and nuclear power plants, as well as highlighting results of field applications. Also discussed are future research opportunities brought by ADRC’s entry as the baseline control technology in thermal processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Strothman, J. M. (1995). More than a century of measuring and controlling industrial processes. Intech, 42(6), 52–78.

    Google Scholar 

  2. Shinskey, F. G. (2002). Process control: As taught vs as practiced. Industrial & Engineering Chemistry Research, 41(16), 3745–3750.

    Google Scholar 

  3. Sun, L., Li, D., & Lee, K. Y. (2016). Optimal disturbance rejection for PI controller with constraints on relative delay margin. ISA Transactions, 63, 103–111.

    Google Scholar 

  4. Lee, J. H. (2011). Model predictive control: Review of the three decades of development. International Journal of Control, Automation and Systems, 9(3), 415–424.

    Google Scholar 

  5. Lei, Y., Lim, J., & Fei, S. (2017). An improved single neuron self-adaptive PID control scheme of superheated steam temperature control system. International Journal of System Control and Information Processing, 2(1), 1–13.

    Google Scholar 

  6. Yu, T., Chan, K. W., Tong, J. P., Zhou, B., & Li, D. H. (2010). Coordinated robust nonlinear boiler-turbine-generator control systems via approximate dynamic feedback linearization. Journal of Process Control, 20(4), 365–374.

    Google Scholar 

  7. Sun, L., Li, D., & Lee, K. Y. (2015). Enhanced decentralized PI control for fluidized bed combustor via advanced disturbance observer. Control Engineering Practice, 42, 128–139.

    Google Scholar 

  8. Han, J. (2008). Active Disturbance Rejection Control Technique – the Technique for Estimating and Compensating the Uncertainties. Beijing: National Defense Industry Press (in Chinese).

    Google Scholar 

  9. Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906.

    Google Scholar 

  10. Gao, Z (2003). Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the American Control Conference (pp. 4989–4996). Denver, CO, USA.

  11. Guo, B., & Zhao, Z. (2013). On convergence of the nonlinear active disturbance rejection control for MIMO systems. SIAM Journal on Control and Optimization, 51(2), 1727–1757.

    MathSciNet  MATH  Google Scholar 

  12. Zhao, Z., & Guo, B. (2016). On convergence of nonlinear active disturbance rejection control for SISO nonlinear systems. Journal of Dynamical and Control Systems, 22(2), 385–412.

    MathSciNet  MATH  Google Scholar 

  13. Wu, Z., & Guo, B. (2019). On convergence of active disturbance rejection control for a class of uncertain stochastic nonlinear systems. International Journal of Control, 92(5), 1103–1116.

    MathSciNet  MATH  Google Scholar 

  14. Aguilar-Ibanez, C., Sira-Ramirez, H., & Acosta, J. (2017). Stability of active disturbance rejection control for uncertain systems: A Lyapunov perspective. International Journal of Robust and Nonlinear Control, 27(18), 4541–4553.

    MathSciNet  MATH  Google Scholar 

  15. Chen, S., Bai, W., Hu, Y., Huang, Y., & Gao, Z. Q. (2020). On the conceptualization of total disturbance and its profound implications. Sciences China – Information Sciences, 63(2), 129201. https://doi.org/10.1007/s11432-018-9644-3.

    Article  MathSciNet  Google Scholar 

  16. Xue, W., Bai, W., Yang, S., Song, K., Huang, Y., & Xie, H. (2015). ADRC with adaptive extended state observer and its application to airfuel ratio control in gasoline engines. IEEE Transactions on Industrial Electronics, 62(9), 5847–5857.

    Google Scholar 

  17. Xia, Y., Dai, L., Fu, M., Li, C. M., & Wang, C. M. (2014). Application of active disturbance rejection control in tank gun control system. Journal of the Franklin Institute, 351(4), 2299–2314.

    MathSciNet  MATH  Google Scholar 

  18. Stankovic, M., Manojlovic, S., Simic, S., Mitrovic, S. T., & Naumovic, M. B. (2016). FPGA system-level based design of multi-axis ADRC controller. Mechatronics, 40, 146–155.

    Google Scholar 

  19. Hai, X., Wang, Z., Feng, Q., Ren, Y., Xu, B. H., Cui, J. J., & Duan, H. B. (2019). Mobile robot ADRC with an automatic parameter tuning mechanism via modified pigeon-inspired optimization. IEEE/ASME Transactions on Mechatronics, 24(6), 2616–2626.

    Google Scholar 

  20. Carreno-Zagarra, J., Guzman, J., Moreno, J., & Villamizar, R. (2019). Linear active disturbance rejection control for a raceway photobioreactor. Control Engineering Practice, 85, 271–279.

    Google Scholar 

  21. Wu, Z., He, T., Li, D., Xue, Y. L., Sun, L., & Sun, L. M. (2019). Superheated steam temperature control based on modified active disturbance rejection control. Control Engineering Practice, 83, 83–97.

    Google Scholar 

  22. Huang, Y., & Xue, W. (2014). Active disturbance rejection control: methodology and theoretical analysis. ISA Transactions, 53(4), 963–976.

    MathSciNet  Google Scholar 

  23. Wang, L., Li, Q., Tong, C., & Yin, Y. X. (2013). Overview of active disturbance rejection control for systems with time-delay. Control Theory and Applications, 30(12), 1521–1533.

    MATH  Google Scholar 

  24. Xia, Y., Fu, M., Deng, Z., & Ren, X. M. (2013). Recent developments in sliding mode control and active disturbance rejection control. Control Theory and Applications, 30(2), 137–147.

    MATH  Google Scholar 

  25. Chen, W. H., Yang, J., Guo, L., & Li, S. H. (2015). Disturbance-observer-based control and related methods – an overview. IEEE Transactions on Industrial Electronics, 63(2), 1083–1095.

    Google Scholar 

  26. Madonski, R., & Herman, P. (2015). Survey on methods of increasing the efficiency of extended state disturbance observers. ISA Transactions, 56, 18–27.

    Google Scholar 

  27. Feng, H., & Guo, B. (2017). Active disturbance rejection control: Old and new results. Annual Reviews in Control, 44, 238–248.

    Google Scholar 

  28. Wu, Z., Zhou, H., Guo, B., & Deng, F. Q. (2020). Review and new theoretical perspectives on active disturbance rejection control for uncertain finite-dimensional and infinite-dimensional systems. Nonlinear Dynamics, 101(2), 935–959.

    Google Scholar 

  29. Li, J., Qi, X., & Wan, H. (2017). Active disturbance rejection control: Theoretical results summary and future researches. Control Theory and Applications, 34(3), 281–295.

    MATH  Google Scholar 

  30. Chen, Z., Cheng, Y., Sun, M., & Sun, Q. (2017). Surveys on theory and engineering applications for linear active disturbance rejection control. Information and Control, 46(3), 257–266.

    Google Scholar 

  31. Chen, Z., Liu, J., & Sun, M. (2018). Overview of a novel control method: Active disturbance rejection control technology and its practical applications. CAAI Transactions on Intelligent Systems, 13(6), 865–877.

    Google Scholar 

  32. Zheng, Q., & Gao, Z. (2018). Active disturbance rejection control: Some recent experimental and industrial case studies. Control Theory and Technology, 16(4), 301–313.

    MathSciNet  MATH  Google Scholar 

  33. Guo, B., Bacha, S., & Alamir, M.  (2017). A review on ADRC based PMSM control designs. In Proceedings of the 43rd Annual Conference of the IEEE Industrial Electronics Society (pp. 1747–1753). Beijing, China.

  34. Astrom, K. J., & Huagglund, T. (2006). Advanced PID control. Research Triangle Park, NC: ISA – Instrumentation, Systems and Automation Society.

  35. Astrom, K. J., & Kumar, P. R. (2014). Control: A perspective. Automatica, 50(1), 3–43.

    MathSciNet  MATH  Google Scholar 

  36. Bennett, S. (1979). A history of control engineering 1800–1930. Technology and Culture, 25(9), 224.

    Google Scholar 

  37. Trinks, W. W. (1919). Governors and the Governing of Prime Movers. New York: D. Van Nostrand Company.

    Google Scholar 

  38. Jin, H., Song, J., Lan, W., & Gao, Z. Q. (2019). On the characteristics of ADRC: A PID interpretation. Science China – Information Sciences, 63(10), 209201. https://doi.org/10.1007/s11432-018-9647-6.

    Article  Google Scholar 

  39. Zhong, S., Huang, Y., & Guo, L. (2020). A parameter formula connecting PID and ADRC. Science China – Information Sciences, 63(9), 1–13.

    MathSciNet  Google Scholar 

  40. Nie, Z. Y., Zhu, C., Wang, Q. G., Gao, Z. Q., Shao, H., & Luo, J. L. (2020). Design, analysis and application of a new disturbance rejection PID for uncertain systems. ISA Transactions, 101, 281–294.

    Google Scholar 

  41. Li, X., & Gao, Z. (2020). The invariance principle in disturbance rejection control. Control Theory and Applications, 37(2), 236–244.

    MATH  Google Scholar 

  42. Gao, Z. (2014). On the centrality of disturbance rejection in automatic control. ISA Transactions, 53(4), 850–857.

    Google Scholar 

  43. Zhang, Y., Xue, Y., Li, D., & Sun, L. (2014). Digital realization for position active disturbance rejection controller with bumpless switching function. In Proceedings of the 33rd Chinese Control Conference (pp. 3680–3684). Nanjing, China.

  44. Herbst, G. (2015). Practical active disturbance rejection control: Bumpless transfer, rate limitation, and incremental algorithm. IEEE Transactions on Industrial Electronics, 63(3), 1754–1762.

    Google Scholar 

  45. Sun, L., Li, D., Hu, K., Lee, K. Y., & Pan, F. P. (2016). On tuning and practical implementation of active disturbance rejection controller: A case study from a regenerative heater in a 1000 MW power plant. Industrial & Engineering Chemistry Research, 55(23), 6686–6695.

    Google Scholar 

  46. Chen, X., Li, D., Gao, Z., & Wang, C. F. (2011). Tuning method for second-order active disturbance rejection control. In Proceedings of the 30th Chinese Control Conference (pp. 6322–6327). Yantai, China.

  47. Zhao, C., & Li, D. (2014). Control design for the SISO system with the unknown order and the unknown relative degree. ISA Transactions, 53(4), 858–872.

    MathSciNet  Google Scholar 

  48. Zhou, R., Han, W., & Tan, W. (2018). On applicability and tuning of linear active disturbance rejection control. Control Theory and Applications, 35(11), 1654–1662.

    MATH  Google Scholar 

  49. Zhong, S., Huang, Y., & Guo, L. (2020). A parameter formula connecting PID and ADRC. Science China – Information Sciences, 63, 192203.

    MathSciNet  Google Scholar 

  50. He, T., Wu, Z., Li, D., & Wang, J. H. (2019). A tuning method of active disturbance rejection control for a class of high-order processes. IEEE Transactions on Industrial Electronics, 67(4), 3191–3201.

    Google Scholar 

  51. He, T., Wu, Z., Shi, R., Li, D. H., Sun, L., Wang, L. M., & Zheng S. (2019). Maximum sensitivity-constrained data-driven active disturbance rejection control with application to airflow control in power plant. Energies, 12(2), 231. https://doi.org/10.3390/en12020231.

    Article  Google Scholar 

  52. Wu, Z., He, T., Li, D., & Xue, Y. L. (2018). The calculation of stability and robustness regions for active disturbance rejection controller and its engineering application. Control Theory and Applications, 35(11), 1635–1647.

    MATH  Google Scholar 

  53. Wang, L., Li, Q., Tong, C., Yin, Y. X., Gao, Z. G., Zheng, Q. L., & Zhang, W. C. (2015). On control design and tuning for first order plus time delay plants with significant uncertainties. In Proceedings of the American Control Conference (pp. 5276–5281). Chicago, IL, USA.

  54. Wu, Z., Li, D., & Chen, Y. Q. (2020). Active disturbance rejection control design based on probabilistic robustness for uncertain systems. Industrial & Engineering Chemistry Research, 59(40), 18070–18087.

    Google Scholar 

  55. Zhao, S., & Gao, Z. (2014). Modified active disturbance rejection control for time-delay systems. ISA Transactions, 53(4), 882–888.

    MathSciNet  Google Scholar 

  56. Zheng, Q., & Gao, Z. (2014). Predictive active disturbance rejection control for processes with time delay. ISA Transactions, 53(4), 873–881.

    Google Scholar 

  57. Zhang, Y., Li, D., Gao, Z., & Zheng, Q. L. (2015). On oscillation reduction in feedback control for processes with an uncertain dead time and internal-external disturbances. ISA Transactions, 59, 29–38.

    Google Scholar 

  58. Hao, S., Liu, T., & Wang, Q. G. (2017). Enhanced active disturbance rejection control for time-delay systems. IFAC-PapersOnLine, 50(1), 7541–7546.

    Google Scholar 

  59. Wu, Z., Li, D., Xue, Y., Sun, L. M., He, T., & Zheng, S. (2020). Modified active disturbance rejection control for fluidized bed combustor. ISA Transactions, 102, 135–153.

    Google Scholar 

  60. Liu, X., Li, D., Jiang, X., & Hu, X. (2001). Simulation study of auto-disturbance-rejection controller for high-order systems. Journal of Tsinghua University, 41(6), 95–99.

    Google Scholar 

  61. Wu, Z., Wu, H. S., Li, D., He, T., Jia, F. S., &  Sun, L. (2018). A comparison study of a high order system with different ADRC control strategies. In Proceedings of the 37th Chinese Control Conference (pp. 236–241). Wuhan, China.

  62. Pawar, S., Chile, R., & Patre, B. (2017). Modified reduced order observer based linear active disturbance rejection control for TITO systems. ISA Transactions, 71, 480–494.

    Google Scholar 

  63. Wu, Z., Li, D., Xue, Y., & Chen, Y. Q. (2019). Gain scheduling design based on active disturbance rejection control for thermal power plant under full operating conditions. Energy, 185, 744–762.

    Google Scholar 

  64. Liu, X., Jiang, X., & Li, D. (2000). Simulation study on application of ADRC in superheated steam temperature control. IEEE/CAA Journal of Automatica Sinica, 26, 187–191.

    Google Scholar 

  65. Tian, P., Su, X., Ma, P., & Niu, Y. G. (2006). Full scope control on the main steam temperature based on ADRC technology. Proceedings of the Chinese Society for Electrical Engineering, 26(15), 73–77.

    Google Scholar 

  66. Wang, D., & Zhu, R. (2014). Application of active disturbance rejection in main steam temperature control of thermal power plant. Applied Mechanics and Materials, 716–717, 1658–1661.

    Google Scholar 

  67. Wang, Z., Huang, Y., Han, P., & Wang, D. F. (2010). Optimal design of active disturbance rejection controller for steam temperature of circulating fluidized bed boilers. Journal of Chinese Society of Power Engineering, 30(1), 31–35.

    Google Scholar 

  68. Sun, L., Dong, J., & Li, D. (2014). Active disturbance rejection control for superheated steam boiler temperature using the fruit fly algorithm. Journal of Tsinghua University, 54(10), 1288–1292.

    Google Scholar 

  69. Xia, Y., Liu, B., & Fu, M. (2012). Active disturbance rejection control for power plant with a single loop. Asian Journal of Control, 14(1), 239–250.

    MathSciNet  MATH  Google Scholar 

  70. Sun, M., & Dong, Z. (2019). Cascade active disturbance rejection predictive control for superheated steam temperature of ultra-supercritical double-reheat unit. Proceedings of the CSEE, 39(18), 5415–5423.

    Google Scholar 

  71. Huang, H., Wu, L., Gao, F., Han, J. Q., & Lin, Y. J. (2005). Main steam temperature control of thermal power plant based on active disturbance rejection control. Journal of System Simulation, 17(1), 241–244.

    Google Scholar 

  72. Wu, Z., Zhang, F., Shi, G., He, T., Li, D. H., & Chen, Y. Q. (2019). Frequency-domain analysis of a modified active disturbance rejection control with application to superheated steam temperature control. In Proceedings of the 19th International Conference on Control, Automation and Systems (pp. 44–50). Jeju, South Korea.

  73. Liang, G., Li, W., & Li, Z. (2013). Control of superheated steam temperature in large capacity generation units based on active disturbance rejection method and distributed control system. Control Engineering Practice, 21(3), 268–285.

    Google Scholar 

  74. Shi, G., Wu, Z., Guo, J., Li, D. H., & Ding, Y. J. (2020). Superheated steam temperature control based on a hybrid active disturbance rejection control. Energies, 13, 1757.

    Google Scholar 

  75. Sun, L., Hua, Q. Q., Shen, Y. J., Xue, L., Li, D. H., & Lee, K. Y. (2017). Multi-objective optimization for advanced superheater steam temperature control in a 300 MW power plant. Applied Energy, 208, 592–606.

    Google Scholar 

  76. Wu, Z., Li, D., Xue, Y., Wang, L. M., & Wang, J. (2016). Active disturbance rejection control for fluidized bed combustor. In Proceedings of the 16th International Conference on Control, Automation and Systems (pp. 1286–1291). Gyeongju, South Korea.

  77. Xi, X., Jiang, X., Li, D., & Zeng, H. (2004). Auto disturbance rejection control for circulating fluidized bed boiler combustion process. Journal of Tsinghua University (Science and Technology), 44(11), 1575–1579.

    Google Scholar 

  78. Guan, Z., Wang, B., Lin, Y., & Peng, G. (2009). Study of the bed temperature system for a circulating fluidized bed boiler based on a self-disturbance-resistant control. Journal of Chinese Society of Power Engineering, 29(1), 57–61.

    Google Scholar 

  79. Chen, S., Zhang, Y., & Li, D. (2013). Optimized active disturbance rejection controller design for circulating fluidized bed boiler combustion system. Control Theory and Applications, 30(12), 1589–1594.

    Google Scholar 

  80. Zhang, Y., & Li, D. (2012). Active disturbance rejection control on a bubbling fluidized bed. Journal of University of Science and Technology of China, 42(5), 391–397.

    Google Scholar 

  81. Pan, F., Liu, Q., Sun, L., Li, D. H., & Tan, W. (2015). A novel design of active disturbance rejection controller and its application in the circulating fluidized bed boiler combustion system. In Proceedings of the American Control Conference (pp. 3950–3955). Chicago, IL, USA.

  82. Fang, F., Li, R., & Liu, J. (2017). Active disturbance rejection control for bed temperature of circulating fluidized bed boiler based on multivariable internal model structure. Proceedings of the CSEE, 37(1), 172–180.

    Google Scholar 

  83. Wu, Z., Shi, G., Li, D., et al. (2020). Control of the fluidized bed combustor based on active disturbance rejection control and Bode ideal cut-off. In Proceedings of the 21st IFAC World Congress (pp. 12696–12701). Berlin, Germany.

  84. Wu, Z., He, T., Sun, L., Li, D. H., & Xue, Y. L. (2018). The facilitation of a sustainable power system: A practice from data-driven enhanced boiler control. Sustainability, 10(4), 1112. https://doi.org/10.3390/su10041112.

    Article  Google Scholar 

  85. Zhang, Y., Xue, Y., Yang, H., Li, D. H., Sun, L., Niu, H. M., & Huang, H. P. (2017). Low-order active disturbance rejection control on furnace pressure of 1000 MW power plant. In Proceedings of the 36st Chinese Control Conference (pp. 1934–1768). Dalian, China.

  86. Sun, L., Zhang, Y., Li, D., & Lee, K. Y. (2019). Tuning of active disturbance rejection control with application to power plant furnace regulation. Control Engineering Practice, 92, 104122. https://doi.org/10.1016/j.conengprac.2019.104122.

    Article  Google Scholar 

  87. Liu, X., Jiang, X., Li, D., Wan, J. F., & Xue, Y. L. (2001). Coordinated auto-disturbance-rejection control for boiler-turbine unit. Control Theory and Applications, 18(S1), 149–152.

    MATH  Google Scholar 

  88. Lou, G., Tan, W., & Zheng, Q. (2011). Linear active disturbance rejection control for the coordinated system of drum boiler-turbine units. Proceedings of the CSEE, 31(23), 94–100.

    Google Scholar 

  89. Dong, J., Sun, L., & Li, D. (2015). Flexible active disturbance rejection control for boiler-turbine unit. Journal of Central South University (Science and Technology), 46(9), 1672–7207.

    Google Scholar 

  90. Zhang, F., Wu, X., & Shen, J. (2017). Extended state observer based fuzzy model predictive control for ultra-supercritical boiler-turbine unit. Applied Thermal Engineering, 118, 90–100.

    Google Scholar 

  91. Zhang, F., Xue, Y., Li, D., Wu, Z. L., & He, T. (2019). On the flexible operation of supercritical circulating fluidized bed: Burning carbon based decentralized active disturbance rejection control. Energies, 12(6), 1132. https://doi.org/10.3390/en12061132.

    Article  Google Scholar 

  92. Zhu, J., Wu, X., & Shen, J. (2019). Practical disturbance rejection control for boiler-turbine unit with input constraints. Applied Thermal Engineering, 161, 114184.

    Google Scholar 

  93. Sun, L., Hua, Q., Li, D., Pan, L., Xue, Y. L., & Lee, K. Y. (2017). Direct energy balance based active disturbance rejection control for coal-fired power plant. ISA Transactions, 70, 486–493.

    Google Scholar 

  94. Huang, H., Wu, L., Han, J., & Lin, Y. J. (2004). A study of active disturbance rejection control on unit coordinated control system in thermal power. Proceedings of the CSEE, 24(10), 168–173.

    Google Scholar 

  95. Huang, H., Wu, L., Han, J., Feng, G., & Lin, Y. J. (2004). A new synthesis method for unit coordinated control system in thermal power plant – ADRC control scheme. In International Conference on Power System Technology – POWERCON (pp. 133–138). Singapore.

  96. Ma, Y., Zhang, R., Ma, L., & Wang, B. S. (2014). Double active disturbance rejection control for the coordinated system of thermal power plant. Measurement & Control Technology, 33(11), 89–92.

    Google Scholar 

  97. Chen, Y., Zhang, R., Xu, G., & Nie, H. L. (2016). Linear active disturbance rejection control for coordinated system of large thermal power unit. Computer Simulation, 33(2), 180–184 (in Chinese).

    Google Scholar 

  98. Wu, Z. (2020). Robust Active Disturbance Rejection Control Research and Design for Thermal System. Ph.D. Thesis. Beijing: Tsinghua University.

  99. Sun, L., Li, D., & Jiang, X. (2003). Automatic disturbance rejection control for power plant ball mill. Journal of Tsinghua University, 43(6), 779–781.

    Google Scholar 

  100. Ma, Y., Hao, N., Li, P., & Li, Y. (2007). Application of an auto-disturbance-rejection-controller-based multivariable decoupling control in ball mills. Journal of Engineering for Thermal Energy and Power, 22(3), 297.

    Google Scholar 

  101. Dong, J., Sun, L., & Li, D. (2015). Linear active disturbance rejection control for ball mill coal-pulverizing systems. Chinese Journal of Engineering, 37(4), 509–516.

    Google Scholar 

  102. Sun, L. (2016). Uncertainty Compensation Based Two-degrees-of-freedom Control for Coal Fired Power Plant. Ph.D. Thesis. Beijing: Tsinghua University.

  103. Xu, C., Yang, P., Jiang, S., & Peng, D. G. (2006). Simulation study on automatic disturbance rejection control for water level in boiler drum. Thermal Power Generation, 11, 17–19 (in Chinese).

    Google Scholar 

  104. Cheng, Q., Cheng, Y., Du, X., & Guo, R. Q. (2008). Three-element drum water-level cascade control system featuring a self-disturbance-resistant controller. Journal of Engineering for Thermal Energy and Power, 23(1), 69–72.

    Google Scholar 

  105. Hu, C., & Jun, R. (2014). Study and application of LADRC for drum water-level cascade three-element control. Electric Power, 47(12), 28–31.

    Google Scholar 

  106. Fu, Y., Wang, Y., & Wang, F. (2018). Design of linear active disturbance rejection controller for drum water level of heat recovery boiler. Journal of Engineering for Thermal Energy and Power, 33(10), 83–89.

    Google Scholar 

  107. Pu, C., Zhu, Y., & Su, J. (2020). Drum water level control based on high-order linear active disturbance rejection control. Control Engineering of China, 27(4), 635–640.

    Google Scholar 

  108. Pu, C., Zhu, Y., & Su, J. (2019). Drum water level control based on improved ADRC. Algorithms, 12(7), 132.

    MathSciNet  Google Scholar 

  109. Pu, C., Zhu, Y., & Su, J. (2019). The sliding mode control of the drum water level based on extended state observer. IEEE Access, 7, 135942–135948.

    Google Scholar 

  110. Hu, K., Pan, F., & Wan, W. (2016). Application of active disturbance rejection control technology in thermal power plant. Guangdong Electric Power, 29(12), 1–5.

    Google Scholar 

  111. Jiang, J., Zhang, Q., & Wang, L. (2011). Research on modeling and simulation of active disturbance rejection controller for gas turbine. In International Conference on Mechatronics and Applied Mechanics (pp. 157–158). Hong Kong, China.

  112. Jiang, J., Zhang, Q., & Wang, L. (2012). Research on modeling and simulation of active disturbance rejection controller for gas turbine. Applied Mechanics and Materials, 157–158, 507–510.

    Google Scholar 

  113. Shi, G., Wu, Z., He, T., & Li, D. H. (2020). Shaft speed control of the gas turbine based on active disturbance rejection control. In Proceedins of the 21st IFAC World Congress (pp. 12702–12708). Berlin, Germany.

  114. Shi, G., Wu, Z., He, T., Li, D. H., Ding, Y. J., & Liu, S. M. (2020). Decentralized active disturbance rejection control design for the gas turbine. Measurement and Control. https://doi.org/10.1177/0020294020947130.

    Article  Google Scholar 

  115. Makeximu (2017). Active Disturbance Rejection Control of Lean Pre-mixed Combustion Oscillation. Ph.D. Thesis. Beijing: Tsinghua University.

  116. Lin, P., Du, X., Shi, Y., & Sun, X. M. (2020). Modeling and controller design of a micro gas turbine for power generation. ISA Transactions. https://doi.org/10.1016/j.isatra.2020.05.050.

    Article  Google Scholar 

  117. Gu, J., Ji, N., Sun, Y., Tan, J. L., & Wang, D. X. (2012). The multimodel-based active disturbance rejection control for water level of steam generator in nuclear power plants. Journal of Power Engineering, 32(5), 373–377.

    Google Scholar 

  118. Li, C., Ye, J., & Zhao, M. (2017). Multi-model control for water lever of steam generator in nuclear power plants based on linear active disturbance rejection. Automation & Instrumentation, 32(1), 46–50.

    Google Scholar 

  119. Xue, Y., Lin, J., Li, Y., & Feng, J. B. (2013). Research on pressurizer water level control in nuclear reactor based on active disturbances rejection controller. Applied Mechanics and Materials, 336–338, 608–613.

    Google Scholar 

  120. Liu, Y., Liu, J., & Zhou, S. (2020). Linear active disturbance rejection control for pressurized water reactor power based on partial feedback linearization. Annals of Nuclear Energy, 137, 107088.

    Google Scholar 

  121. Liu, Y., Zhou, S., & Wang, M. (2015). Linear active disturbance rejection control of reactor power. Control Engineering of China, 22(5), 848–853.

    Google Scholar 

  122. Yang, Y., Zhou, Z., He, T., Wu, Z. L., & Li, D. H. (2017). Study on power control methodology of the accelerator driven sub-critical reactor system. In Proceedings of 17th International Conference on Control, Automation and Systems (pp. 809–814). South Korea.

  123. Liu, F., Zhou, S., Shen, C., Wang, X. L., Zhang, H. X., & Liu, Y. Y. (2019). Linear active disturbance rejection control for fast reactor power and core coolant outlet temperature. Nuclear Power Engineering, 40(2), 74–79 (in Chinese).

    Google Scholar 

  124. Dixon, R. (2005). Benchmark challenge at control 2004. Computing and Control Engineering, 15(6), 21–23.

    Google Scholar 

  125. Huang, C., Li, D., & Xue, Y. (2013). Active disturbance rejection control for the ALSTOM gasifier benchmark problem. Control Engineering Practice, 21(4), 556–564.

    Google Scholar 

  126. Chen, S., Li, Q., Li, D., & Tan, W. (2014). Linear active disturbance rejection control for an ALSTOM gasifier. East China Electric Power, 42(3), 610–615.

    Google Scholar 

  127. Zhao, D., Zheng, Q., Gao, F., Bouquain, D., Dou, M. F., & Miraoui, A. (2014). Disturbance decoupling control of an ultra-high speed centrifugal compressor for the air management of fuel cell systems. International Journal of Hydrogen Energy, 39(4), 1788–1798.

    Google Scholar 

  128. Sun, L., Jin, Y., & You, F. (2020). Active disturbance rejection temperature control of open-cathode proton exchange membrane fuel cell. Applied Energy, 261, 114381. https://doi.org/10.1016/j.apenergy.2019.114381.

    Article  Google Scholar 

  129. Li, D., Li, C., Gao, Z., & Jin, Q. B. (2015). On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells. Journal of Power Sources, 283, 452–463.

    Google Scholar 

  130. He, T., Li, D., Wu, Z., Xue, Y. L., & Yang, Y. X. (2017). Modeling and active disturbance rejection control of a single effect LiBr-H2O absorption chiller. In Proceedings of the 11th Asian Control Conference (pp. 2726–2731). Gold Coast, Australia.

  131. Shi, R., He, T., Peng, J., Zhang, Y. J., & Zhuge, W. L. (2016). System design and control for waste heat recovery of automotive engines based on organic Rankine cycle. Energy, 102, 276–286.

    Google Scholar 

  132. Viola, J., & Chen Y. Q. (2020). Digital twin enabled smart control engineering as an industrial AI: A new framework and a case study. In Proceedings of the 2nd International Conference on Industrial Artificial Intelligence. arXiv:2007.03677.

  133. Wu, Z., Yuan, J., Li, D., Xue, Y. L., & Chen, Y. Q. (2020). The influence of rate limit on proportional-integral controller for first-order plus time-delay systems. ISA Transactions, 105, 157–173.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Science & Technology Research Project in Henan Province of China (No. 212102311052), the National Key Research and Development Program of China (No. 2016YFB0901405) and the National Natural Science Foundation of China (No. 61473265). Special thanks go to Elsevier, MDPI and American Chemical Society Publications for their permissions of the reproduction and reuse Figs. 1, 4, 7 and 8, Figs. 5 and 6, and Figs. 11 and 12, respectively. Special thanks also go to Dr. Yuqiong Zhang at China Electric Power Research Institute, Dr. Li Sun at Southeast University and Dr. Ting He at Jinan University for their support in figure data of the field application results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Gao, Z., Li, D. et al. On transitioning from PID to ADRC in thermal power plants. Control Theory Technol. 19, 3–18 (2021). https://doi.org/10.1007/s11768-021-00032-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-021-00032-4

Keywords

Navigation