Skip to main content
Log in

3D multi-scale vision transformer for lung nodule detection in chest CT images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Lung cancer becomes the most prominent cause of cancer-related death in society. Normally, radiologists use computed tomography (CT) to diagnose lung nodules in lung cancer patients. A single CT scan for a patient produces hundreds of images that are manually analyzed by radiologists which is a big burden and sometimes leads to inaccuracy. Recently, many computer-aided diagnosis (CAD) systems integrated with deep learning architectures have been proposed to assist radiologists. This study proposes the CAD scheme based on a 3D multi-scale vision transformer (3D-MSViT) to enhance multi-scale feature extraction and improves lung nodule prediction efficiency from 3D CT images. The 3D-MSViT architecture adopted a local–global transformer block structure whereby the local transformer stage individually processes each scale patch and forwards it to the global transformer level for merging multi-scale features. The transformer blocks fully relied on the attention mechanism without the inclusion of the convolutional neural network to reduce the network parameters. The proposed CAD scheme was validated on 888 CT images of the Lung Nodule Analysis 2016 (LUNA16) public dataset. Free-response receiver operating characteristics analysis was adopted to evaluate the proposed method. The 3D-MSViT algorithm obtained the highest sensitivity of 97.81% and competition performance metrics of 0.911. Therefore, the 3D-MSViT scheme obtained comparable results with low network complexity related to the counterpart deep learning approaches in prior studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The research work uses the LUNA16 dataset that is available online through https://luna16.grand-challenge.org/.

References

  1. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2022. CA. Cancer J. Clin. 72(1), 7–33 (2022). https://doi.org/10.3322/caac.21708

    Article  Google Scholar 

  2. Valente, I.R.S., Cortez, P.C., Neto, E.C., Soares, J.M., de Albuquerque, V.H.C., Tavares, J.M.R.S.: Automatic 3D pulmonary nodule detection in CT images: a survey. Comput. Methods Programs Biomed. 124, 91–107 (2016). https://doi.org/10.1016/j.cmpb.2015.10.006

    Article  Google Scholar 

  3. Wang, Q., Zuo, M.: A novel variational optimization model for medical CT and MR image fusion. Signal Image Video Process. (2022). https://doi.org/10.1007/s11760-022-02220-4

    Article  Google Scholar 

  4. Trung, N.T., Trinh, D.H., Trung, N.L., Luong, M.: Low-dose CT image denoising using deep convolutional neural networks with extended receptive fields. Signal Image Video Process. (2022). https://doi.org/10.1007/s11760-022-02157-8

    Article  Google Scholar 

  5. Setio, A.A.A., et al.: Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks. IEEE Trans. Med. Imaging 35(5), 1160–1169 (2016). https://doi.org/10.1109/TMI.2016.2536809

    Article  Google Scholar 

  6. Jiang, H., Ma, H., Qian, W., Gao, M., Li, Y.: An automatic detection system of lung nodule based on multigroup patch-based deep learning network. IEEE J. Biomed. Heal. Inform. 22(4), 1227–1237 (2018). https://doi.org/10.1109/JBHI.2017.2725903

    Article  Google Scholar 

  7. Dutande, P., Baid, U., Talbar, S.: LNCDS: A 2D–3D cascaded CNN approach for lung nodule classification, detection and segmentation. Biomed. Signal Process. Control 67, 102527 (2021). https://doi.org/10.1016/j.bspc.2021.102527

    Article  Google Scholar 

  8. Mittapalli, P.S., Thanikaiselvan, V.: Multiscale CNN with compound fusions for false positive reduction in lung nodule detection. Artif. Intell. Med. 113, 102017 (2021). https://doi.org/10.1016/j.artmed.2021.102017

    Article  Google Scholar 

  9. Mehta, K., Jain, A., Mangalagiri, J., Menon, S., Nguyen, P., Chapman, D.R.: Lung nodule classification using biomarkers, volumetric radiomics, and 3D CNNs. J. Digit. Imaging (2021). https://doi.org/10.1007/s10278-020-00417-y

    Article  Google Scholar 

  10. Liu, J., Gong, J., Wang, L., Sun, X., Nie, S.: Segmentation refinement of small-size juxta-pleural lung nodules in CT scans. Iran. J. Radiol. (2019). https://doi.org/10.5812/iranjradiol.65034

    Article  Google Scholar 

  11. Gu, Y., et al.: Automatic lung nodule detection using multi-scale dot nodule-enhancement filter and weighted support vector machines in chest computed tomography. PLoS ONE 14(1), e0210551 (2019). https://doi.org/10.1371/journal.pone.0210551

    Article  Google Scholar 

  12. Lu, L., Tan, Y., Schwartz, L.H., Zhao, B.: Hybrid detection of lung nodules on CT scan images. Med. Phys. 42(9), 5042–5054 (2015). https://doi.org/10.1118/1.4927573

    Article  Google Scholar 

  13. Murphy, K., van Ginneken, B., Schilham, A.M.R., de Hoop, B.J., Gietema, H.A., Prokop, M.: A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med. Image Anal. 13(5), 757–770 (2009). https://doi.org/10.1016/j.media.2009.07.001

    Article  Google Scholar 

  14. De Moura, J., et al.: Multi-view multi-scale CNNs for lung nodule type classification from CT images. IEEE Trans. Med. Imaging 7(1), 1–12 (2018). https://doi.org/10.1117/12.2285954

    Article  MathSciNet  Google Scholar 

  15. Xie, H., Yang, D., Sun, N., Chen, Z., Zhang, Y.: Automated pulmonary nodule detection in CT images using deep convolutional neural networks. Pattern Recognit. 85, 109–119 (2019). https://doi.org/10.1016/j.patcog.2018.07.031

    Article  Google Scholar 

  16. Zuo, W., Zhou, F., Li, Z., Wang, L.: Multi-resolution CNN and knowledge transfer for candidate classification in lung nodule detection. IEEE Access 7(c), 32510–32521 (2019). https://doi.org/10.1109/ACCESS.2019.2903587

    Article  Google Scholar 

  17. Yu, L., Dou, Q., Chen, H., Heng, P.-A., Qin, J.: Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans. Biomed. Eng. 64(7), 1558–1567 (2016). https://doi.org/10.1109/tbme.2016.2613502

    Article  Google Scholar 

  18. Zhang, H., Zhang, H.: LungSeek: 3D Selective Kernel residual network for pulmonary nodule diagnosis. Vis. Comput. (2022). https://doi.org/10.1007/s00371-021-02366-1

    Article  Google Scholar 

  19. Zhu, W., Liu, C., Fan, W., Xie, X.: DeepLung: deep 3D dual path nets for automated pulmonary nodule detection and classification. In: Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018, vol. pp. 673–681, 2018-Jan. https://doi.org/10.1109/WACV.2018.00079.

  20. Zhang, M., Kong, Z., Zhu, W., Yan, F., Xie, C.: Pulmonary nodule detection based on 3D feature pyramid network with incorporated squeeze-and-excitation-attention mechanism. Concurr. Comput. (2021). https://doi.org/10.1002/cpe.6237

    Article  Google Scholar 

  21. Qin, R., et al.: Fine-grained lung cancer classification from PET and CT images based on multidimensional attention mechanism. Complexity (2020). https://doi.org/10.1155/2020/6153657

    Article  Google Scholar 

  22. Gong, L., Jiang, S., Yang, Z., Zhang, G., Wang, L.: Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks. Int. J. Comput. Assist. Radiol. Surg. 14(11), 1969–1979 (2019). https://doi.org/10.1007/s11548-019-01979-1

    Article  Google Scholar 

  23. Huang, Y.S., Chou, P.R., Chen, H.M., Chang, Y.C., Chang, R.F.: One-stage pulmonary nodule detection using 3-D DCNN with feature fusion and attention mechanism in CT image. Comput. Methods Programs Biomed. 220, 106786 (2022). https://doi.org/10.1016/j.cmpb.2022.106786

    Article  Google Scholar 

  24. Zhu, X., Wang, X., Shi, Y., Ren, S., Wang, W.: Channel-wise attention mechanism in the 3D convolutional network for lung nodule detection. Electronics 11(10), 1600 (2022). https://doi.org/10.3390/electronics11101600

    Article  Google Scholar 

  25. Luo, X., et al.: SCPM-Net: an anchor-free 3D lung nodule detection network using sphere representation and center points matching. Med. Image Anal. (2022). https://doi.org/10.1016/j.media.2021.102287

    Article  Google Scholar 

  26. Vaswani, A.: Attention is all you need. In: 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA., 2017, no. Nips (2017)

  27. Zhai, X. et al.: Vision Transformer, arXiv:2010.11929 (2021).

  28. Wang, B., Wang, F., Dong, P., Li, C.: Multiscale transunet++: dense hybrid U-Net with transformer for medical image segmentation. Signal Image Video Process. (2022). https://doi.org/10.1007/s11760-021-02115-w

    Article  Google Scholar 

  29. Wu, M., Qian, Y., Liao, X., Wang, Q., Heng, P.-A.: Hepatic vessel segmentation based on 3D swin-transformer with inductive biased multi-head self-attention, 2021, [Online]. Available: http://arxiv.org/abs/2111.03368

  30. Liu, Z. et al.: Swin transformer: hierarchical vision transformer using shifted windows, arXiv:2103.14030 (2021).

  31. Kekeke, et al.: T5: exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 1–67 (2020)

    Google Scholar 

  32. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  33. Janocha, K., Czarnecki, W.M.: On loss functions for deep neural networks in classification. Schedae Informaticae 25, 49–59 (2016). https://doi.org/10.4467/20838476SI.16.004.6185

    Article  Google Scholar 

  34. LIDC-IDRI—The Cancer Imaging Archive (TCIA) Public Access 2021. https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI.

  35. Liu, K., Kang, G.: Multiview convolutional neural networks for lung nodule classification. Int. J. Imaging Syst. Technol. 27(1), 12–22 (2017). https://doi.org/10.1002/ima.22206

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editors and synonyms reviewers for their constructive comments on improving this work.

Funding

This work is supported by The National Natural Science Foundation of China under Grant Numbers 61671185 and 62071153.

Author information

Authors and Affiliations

Authors

Contributions

HM: Methodology, formal analysis, and writing—original draft preparation. LW: The manuscript investigation, writing—review, and editing. YZ: Conceptualization, resources, funding acquisition, and supervision.

Corresponding author

Correspondence to Longwen Wu.

Ethics declarations

Conflict of interests

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkindu, H., Wu, L. & Zhao, Y. 3D multi-scale vision transformer for lung nodule detection in chest CT images. SIViP 17, 2473–2480 (2023). https://doi.org/10.1007/s11760-022-02464-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02464-0

Keywords

Navigation