Skip to main content
Log in

DCT-based color image compression algorithm using adaptive block scanning

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A lossy compression algorithm for still color images is presented. Based on DCT and using adaptive block scanning, the proposed method utilizes a simple technique to encode efficiently the DCT coefficients. The required image quality is guaranteed by using the bisection method to threshold the DCT coefficients of the YCbCr image gotten from the input RGB image. Four scan orders (zigzag, horizontal, vertical and hilbert) are used as adaptive block scanning to read the DCT coefficients from the retained DCT block coefficients. Following a scan order, an index vector is formed by the length of the zero-run sequence that preceded a nonzero DCT coefficient. The lowest value of the four index vectors maximums determines the best scan. Finally, the nonzero DCT coefficients and the index vector for each block are encoded to form the compressed image. The obtained results faced to those reported in recent methods show clearly that the proposed technique achieves high performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khalid, S.: Introduction to Data Compression, 4th edn. Elsevier, San Francisco (2006)

    MATH  Google Scholar 

  2. Kurita, T., Otsu, N.: A method of block truncation coding for color image compression. IEEE Trans. Commun. 41(9), 1270–1274 (1993)

    Article  Google Scholar 

  3. Feng, Y.S., Nasrabadi, N.M.: Dynamic address-vector quantisation of RGB colour images. IEE Proc. I Commun. Speech Vision 138(4), 225–231 (1991)

    Article  Google Scholar 

  4. Clausen, C., Wechsler, H.: Color image compression using PCA and back propagation learning. Pattern Recognit. 33(9), 1555–1560 (2000)

    Article  Google Scholar 

  5. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), 18–34 (1992)

    Article  Google Scholar 

  6. Dagher, I.: Highly-compacted DCT coefficients. Signal Image Video Process. 4(3), 303–307 (2010)

    Article  Google Scholar 

  7. Ponomarenko, N., Lukin, V., Egiazarian, K., Astola, J.: DCT based high quality image compression. In: Scandinavian Conference on Image Analysis, pp. 1177–1185. Springer, Berlin (2005)

    Chapter  Google Scholar 

  8. Ponomarenko, N., Lukin, V., Egiazarian, K., Astola, J.: ADCTC: Advanced DCT-Based Image Coder. In: Proceedings of LNLA, Switzerland (2008)

  9. Xiong, Z., Ramchandran, K., Orchard, M.T., Zhang, Y.Q.: A comparative study of DCT and wavelet-based image coding. IEEE Trans. Circuits Syst. Video Technol. 9(5), 692–695 (1999)

    Article  Google Scholar 

  10. Pearlman, W., Islam, A., Nagaraj, N., Said, A.: Efficient, low complexity image coding with a set partitioning embedded block coder. IEEE Trans. Circuits Syst. Video Technol. 14(11), 1219–1235 (2004)

    Article  Google Scholar 

  11. Shoitan, R., Nossair, Z., Isamil, I., Tobal, A.: Hybrid wavelet measurement matrices for improving compressive imaging. Signal Image Video Process. 11(1), 65–72 (2017)

    Article  Google Scholar 

  12. Ohm, J.R., Sullivan, G.J., Schwarz, H., Tan, T.K., Wiegand, T.: Comparison of the coding efficiency of video coding standards including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22(12), 1669–1684 (2012)

    Article  Google Scholar 

  13. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  14. Bauermann, I., Steinbach, E.: Further Lossless Compression of JPEG Images. Picture Coding Symposium. In: Proceedings of PCS San Francisco, December 15–17 (2004)

  15. Ponomarenko, N., Egiazarian, K., Lukin, V., Astola, J.: Additional lossless compression of JPEG images. In : Proceedings of 4th Symposium on Image and Signal Processing and Analysis, Zagreb, Croatia, September, 117–120 (2005)

  16. Silveira, T.L.T.D., Oliveira, R.S., Bayer, F.M., Cintra, R.J., Madanayake, A.: Multiplierless 16-point DCT approximation for low-complexity image and video coding. Signal Image Video Process. 11(2), 227–233 (2017)

    Article  Google Scholar 

  17. Douak, F., Benzid, R., Benoudjit, N.: Color image compression algorithm based on the DCT transform combined to an adaptive block scanning. AEU Int. J. Electron. Commun. 65(1), 16–26 (2011)

    Article  Google Scholar 

  18. Messaoudi, A., Srairi, K.: Colour image compression algorithm based on the DCT transform using difference lookup table. Electron. Lett. 52(20), 1685–1686 (2016)

    Article  Google Scholar 

  19. Kodak lossless true color image suite. http://www.r0k.us/graphics/kodak/. Accessed April 2019

  20. USC-SIPI image database. http://sipi.usc.edu/database/database.php?volume=misc. Accessed April 2019

  21. Lim, S., Kim, H., Choi, Y., Yu, S.: Fast intra-mode decision method based on DCT coefficients for h.264/avc. Signal Image Video Process. 9(2), 481–489 (2015)

    Article  Google Scholar 

  22. Yang, C., Zhao, Y., Wang, S.: Low bit-rate cloud-based image coding in the wavelet transform domain. Signal Image and Video Process. 12(8), 1437–1445 (2018)

    Article  Google Scholar 

  23. Benzid, R., Marir, F., Bouguechal, N.E.: Electrocardiogram compression method based on the adaptive wavelet coefficients quantization combined to a modified two-role encoder. IEEE Signal Process. Lett. 14(6), 373–376 (2007)

    Article  Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  25. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  26. George, M., Thomas, M., Jayadas, C.K.: A methodology for spatial domain image compression based on hops encoding. Procedia Technol. 25, 52–59 (2016)

    Article  Google Scholar 

  27. Gaubatz, M.: MeTriX MuX Visual Quality Assessment Package. http://foulard.ece.cornell.edu/gaubatz/metrix_mux. Accessed April 2019

  28. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM Matlab source code. https://www4.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/ Files/FeatureSIM.m. Accessed April 2019

  29. Dhara, B.C., Chanda, B.: Color image compression based on block truncation coding using pattern fitting principle. Pattern Recognit. 40(9), 2408–2417 (2007)

    Article  Google Scholar 

  30. Boucetta, A., Melkemi, K.E.: DWT Based-Approach for Color Image Compression Using Genetic Algorithm. In: Elmoataz, A., Mammass, D., Lezoray, O., Nouboud, F., Aboutajdine, D. (eds.) Image and Signal Processing. ICISP 2012. Lecture Notes in Computer Science, vol. 7340. Springer, Berlin, Heidelberg (2012)

  31. Rahul, K., Tiwari, A.K.: Saliency enabled compression in JPEG framework. IET Image Process. 12(7), 1142–1149 (2018). https://doi.org/10.1049/iet-ipr.2017.0554

    Article  Google Scholar 

  32. Aranda, J.J.G., Casquete, M.G., Cueto, M.C., Salmerón, J.N., Vidal, F.G.: Logarithmical hopping encoding: a low computational complexity algorithm for image compression. IET Image Process. 9(8), 643–651 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Messaoudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messaoudi, A., Benchabane, F. & Srairi, K. DCT-based color image compression algorithm using adaptive block scanning. SIViP 13, 1441–1449 (2019). https://doi.org/10.1007/s11760-019-01492-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01492-7

Keywords

Navigation