Skip to main content
Log in

ECG compression method based on adaptive quantization of main wavelet packet subbands

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this study, a new compression algorithm for ECG signal is proposed based on selecting important subbands of wavelet packet transform (WPT) and applying subband-dependent quantization algorithm. To this end, first WPT was applied on ECG signal and then more important subbands are selected according to their Shannon entropy. In the next step, content-based quantization and denoising method are applied to the coefficients of the selected subbands. Finally, arithmetic coding is employed to produce compressed data. The performance of the proposed compression method is evaluated using compression rate (CR), percentage root-mean-square difference (PRD) as signal distortion, and wavelet energy-based diagnostic distortion (WEDD) as diagnostic distortion measures on MIT-BIH Arrhythmia database. The average CR of the proposed method is 29.1, its average PRD is <2.9 % and WEDD is <3.2 %. These results demonstrated that the proposed method has a good performance compared to the state-of-the-art compression algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arafat, M.A., Chowdhury, A.W., Hasan, M.K.: A simple time domain algorithm for the detection of ventricular fibrillation in electrocardiogram. Signal Image Video Process 5(1), 1–10 (2011)

    Article  Google Scholar 

  2. Huang, B., Wang, Y., Chen, J.: ECG compression using the context modeling arithmetic coding with dynamic learning vector-scalar quantization. Biomed. Signal Process. Control 8, 59–65 (2013)

    Article  Google Scholar 

  3. Cetin, A.E., Köymen, H.: In: Bonzino J.D. (ed.) Compression of digital biomedical signals, 2nd edn, elektroarsenal.net (2000)

  4. Balouchestani, M., Raahemifar, K., Krishnan, S.: Low sampling rate algorithm for wireless ECG systems based on compressed sensing theory. Signal Image Video Process 9(3), 527–533 (2015)

    Article  Google Scholar 

  5. Mamaghanian, H., Khaled, N., Atienza, D., Vandergheynst, P.: Compressed sensing for real-time energy-efficient ecg compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011)

    Article  Google Scholar 

  6. Balouchestani, M., Krishnan, S.: Advanced K-means clustering algorithm for large ECG data sets based on a collaboration of compressed sensing theory and K-SVD approach. Signal Image Video Process 10(1), 113–120 (2016)

    Article  Google Scholar 

  7. Agulhari, C.M., Bonatti, I.S., Peres, P.L.D.: An adaptive run length encoding method for the compression of electrocardiograms. Med. Eng. Phys. 35, 145–153 (2013)

    Article  Google Scholar 

  8. Chou, H., Chen, Y., Shiau, Y.: An effective and efficient compression algorithm for ECG signals with irregular periods. IEEE Trans. Biomed. Eng. 53(6), 1198–1205 (2006)

    Article  Google Scholar 

  9. Cetin, A.E., Koymen, H., Aydin, M.C.: Multichannel ECG data-compression by multirate signal-processing and transform domain coding techniques. IEEE Trans. Biomed. Eng. 40(5), 495–499 (1993)

    Article  Google Scholar 

  10. Filho, E., Rodrigues, N.: On ECG signal compression with 1-D multiscale recurrent patterns allied to preprocessing techniques. IEEE Trans. Biomed. Eng. 56(3), 896–900 (2009)

    Article  Google Scholar 

  11. Aggarwal, V., Patterh, M.S.: Quality controlled ECG compression using essentially non-oscillatory point-value decomposition (ENOPV) technique. Digit. Signal Process. 22, 878–884 (2012)

    Article  MathSciNet  Google Scholar 

  12. Wang, C., Liu, J., Sun, L.: Compression algorithm for electrocardiograms based on sparse decomposition. Front. Electr. Electron. Eng. China 4, 10–14 (2009)

    Article  Google Scholar 

  13. Chen, J., Wang, F., Zhang, Y., Shi, X.: ECG compression using uniform scalar dead-zone quantization and conditional entropy coding. Med. Eng. Phys. 30, 523–530 (2008)

    Article  Google Scholar 

  14. Lee, S., Kim, J., Lee, M.: A real-time ECG data compression and transmission algorithm for an e-health device. IEEE Trans. Biomed. Eng. 58(9), 2448–2455 (2011)

    Article  Google Scholar 

  15. Blanco-Velasco, M., Cruz-Roldan, F., Godino-Llorente, J., Barner, K.: ECG compression with retrieved quality guaranteed. Electron. Lett 40(23), 1466–1467 (2004)

    Article  Google Scholar 

  16. Hong-xin, Z., Can-feng, C., Yan-ling, W., Pei-hua, L., et al.: Decomposition and compression for ECG and EEG signals with sequence index coding method based on matching pursuit. J. China Univ. Posts Telecommun. 19(2), 92–95 (2012)

    Article  Google Scholar 

  17. Lu, Z., Kim, D., Pearlman, W.: Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm. IEEE Trans. Biomed. Eng. 47(7), 849–856 (2000)

    Article  Google Scholar 

  18. Taubman, D., Marcellin, M.: JPEG2000: Image Compression Fundamentals, Practice and Standards. Kluwer, Dordrecht (2002)

    Book  Google Scholar 

  19. Benzid, R., Marir, F., Boughechal, N.-E.: Electrocardiogram compression method based on the adaptive wavelet coefficients quantization combined to a modified two-role encoder. IEEE Signal Process. Lett. 14(6), 373–376 (2007)

  20. Aydin, M.C., Cetin, A.E., Koymen, H.: ECG data compression by sub-band coding. Electron. Lett. 7(4), 359–360 (1991)

    Article  Google Scholar 

  21. Chen, J., Ma, J., Zhang, Y., Shi, X.: ECG compression based on wavelet transform and Golomb coding. Electron. Lett. 42(6), 322–324 (2006)

    Article  Google Scholar 

  22. Ku, C., Hung, K., Wu, T.: Wavelet-based ECG data compression system with linear quality control scheme. IEEE Trans. Biomed. Eng. 57(6), 1399–1409 (2010)

    Article  Google Scholar 

  23. Moazami-Goudarzi, M., Moradi, M.: Electrocardiogram signal compression using multiwavelet transform. Trans. Eng. Comput. Technol. 6, 332–336 (2005)

  24. Blanco-Velasco, M., Cruz-Roldan, F., Godino-Llorente, J., Barner, K.: Wavelet packets feasibility study for the design of an ECG compressor. IEEE Trans. Biomed. Eng 54(4), 766–769 (2007)

    Article  Google Scholar 

  25. Tohumoglu, D., Erbil Sezgin, K.: ECG signal compression by multiiteration EZW coding for different wavelets and thresholds. Comput. Biol. Med 37, 173–182 (2007)

    Article  Google Scholar 

  26. Luo, K., Li, J., Wu, J.: A dynamic compression scheme for energy-efficient real-time wireless electrocardiogram biosensors. IEEE Trans. Instr. Meas. 63, 2160–2169 (2014)

    Article  Google Scholar 

  27. Fathi, A., Naghsh-Nilchi, A.R.: Efficient image denoising method based on a new adaptive wavelet packet thresholding function. IEEE Trans. Image Process. 21(9), 3981–3990 (2012)

    Article  MathSciNet  Google Scholar 

  28. Kumar, R., Kumar, A., Pandey, R.K.: Beta wavelet based ECG signal compression using lossless encoding with modified thresholding. Comput. Electr. Eng. 39, 130–140 (2013)

    Article  Google Scholar 

  29. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. The MIT-BIH Arrhythmia Database. http://www.physionet.org/physiobank/database/mitdb. Feb 2005

  32. Manikandan, M.S., Dandapat, S.: Wavelet energy based diagnostic distortion measure for ECG. Biomed. Signal Process. Control 2(2), 80–96 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolhossein Fathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, A., Faraji-kheirabadi, F. ECG compression method based on adaptive quantization of main wavelet packet subbands. SIViP 10, 1433–1440 (2016). https://doi.org/10.1007/s11760-016-0944-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0944-z

Keywords

Navigation