Skip to main content
Log in

Adaptive fuzzy intensity measure enhancement technique for non-uniform illumination and low-contrast images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A new enhancement technique based on fuzzy intensity measure is proposed in this study to address problems in non-uniform illumination and low contrast often encountered in recorded images. The proposed algorithm, namely adaptive fuzzy intensity measure, is capable of selectively enhancing dark region without increasing illumination in bright region. A fuzzy intensity measure is calculated to determine the intensity distribution of the original image and distinguish between bright and dark regions. Image illumination is improved, whereas local contrast of the image is increased to ensure detail preservation. Implementation of the proposed technique on grayscale and color images with non-uniform illumination images shows that in most cases (i.e., except for processing time), the proposed technique is superior compared with other state-of-the-art techniques. The proposed technique produces images with homogeneous illumination. In addition, the proposed method is computationally fast (i.e., \(<\)1 s) and thus can be utilized in real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In the GC approach, the value of gamma is chosen based on the optimization procedure as presented in Sect. 4. However, for this approach, the gamma values are incremented from 0.1 to 1.0 and gamma value that produces the maximum \(Q\) is chosen as the optimum value of gamma.

References

  1. Bumbaca, F., Smith, K.C.: A practical approach to image restoration for computer vision. Comput. Vis. Graph. Image Process. 42(2), 220–233 (1988)

    Article  Google Scholar 

  2. Huang, K.-Q., Wang, Q., Wu, Z.-Y.: Natural color image enhancement and evaluation algorithm based on human visual system. Comput. Vis. Image Underst. 103(1), 52–63 (2006)

    Article  Google Scholar 

  3. Chan, F.W.Y.: Measurement sensitivity enhancement by improved reflective computer vision technique for non-destructive evaluation. NDT & E Int. 43(3), 210–215 (2010)

    Article  Google Scholar 

  4. Xue-bo, J., Hai-jiang, Z., Jing-jing, D., Ya-ming, W.: S-Retinex brightness adjustment for night-vision image. Procedia Eng. 15, 2571–2576 (2011)

    Article  Google Scholar 

  5. Shieh, W.-Y., Huang, J.-C.: Falling-incident detection and throughput enhancement in a multi-camera video-surveillance system. Med. Eng. Phys. 34(7), 954–963 (2012)

    Article  Google Scholar 

  6. Kim, S., Shin, J., Paik, J.: Real-time iterative framework of regularized image restoration and its application to video enhancement. Real-Time Imaging 9(1), 61–72 (2003)

    Article  Google Scholar 

  7. Wu, Y., Sun, Y., Zhang, H.: A fast video illumination enhancement method based on simplified VEC model. Procedia Eng. 29, 3668–3673 (2012)

    Article  Google Scholar 

  8. Bhaskar, H., Singh, S.: Live cell imaging: a computational perspective. J. Real-Time Image Process. 1(3), 195–212 (2007)

    Article  Google Scholar 

  9. Feng, J., Xiong, N., Yang, L., Yang, Y.: A low distortion image enhancement scheme based on multi-resolutions analysis in next generation network. Multimed. Tools Appl. 56(2), 227–243 (2012)

    Article  Google Scholar 

  10. Hasikin, K., Isa, N.A.M.: Fuzzy enhancement for nonuniform illumination of microscopic Sprague Dawley rat sperm image. In: Medical Measurements and Applications Proceedings (MeMeA), 2012 IEEE International Symposium on, pp. 1–6 (2012)

  11. Kimori, Y.: Mathematical morphology-based approach to the enhancement of morphological features in medical images. J. Clin. Bioinform. 1(1), 33 (2011)

    Article  Google Scholar 

  12. Mittal, D., Kumar, V., Saxena, S., Khandelwal, N., Kalra, N.: Enhancement of the ultrasound images by modified anisotropic diffusion method. Med. Biol. Eng. Comput. 48(12), 1281–1291 (2010)

    Article  Google Scholar 

  13. Shiraishi, J., Li, Q., Appelbaum, D., Doi, K.: Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin. Nucl. Med. 41(6), 449–462 (2011)

    Article  Google Scholar 

  14. Shiraishi, J., Li, Q., Appelbaum, D., Pu, Y., Doi, K.: Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans. Med. Phys. 34(1), 25–36 (2007)

    Article  Google Scholar 

  15. Lasaponara, R., Masini, N.: Image enhancement, feature extraction and geospatial analysis in an archaeological perspective. In: Lasaponara, R., Masini, N. (eds.) Satellite Remote Sensing. Remote Sensing and Digital Image Processing, vol. 16, pp. 17–63. Springer, Netherlands (2012)

    Chapter  Google Scholar 

  16. Pan, X.-B., Brady, M., Bowman, A.K., Crowther, C., Tomlin, R.S.O.: Enhancement and feature extraction for images of incised and ink texts. Image Vis. Comput. 22(6), 443–451 (2004)

    Article  Google Scholar 

  17. Ryu, C., Kong, S.G., Kim, H.: Enhancement of feature extraction for low-quality fingerprint images using stochastic resonance. Pattern Recognit. Lett. 32(2), 107–113 (2011)

    Article  Google Scholar 

  18. Islam, M.R., Sayeed, M.S., Samraj, A.: Technology review: image enhancement, feature extraction and template protection of a fingerprint authentication system. J. Appl. Sci. 10(14), 1397–1404 (2010)

    Article  Google Scholar 

  19. Baradarani, A., Jonathan Wu, Q.M., Ahmadi, M.: An efficient illumination invariant face recognition framework via illumination enhancement and DD-DTWT filtering. Pattern Recognit. 46(1), 57–72 (2013)

    Article  Google Scholar 

  20. Chen, T., Wotao, Y., Xiang Sean, Z., Comaniciu, D., Huang, T.S.: Total variation models for variable lighting face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1519–1524 (2006)

  21. Eleyan, A., Ozkaramanli, H., Demirel, H.: Dual-tree and single-tree complex wavelet transform based face recognition. In: Signal Processing and Communications Applications Conference, 2009. SIU 2009. IEEE 17th, 9–11 April 2009 2009, pp. 536–539

  22. Yun, E.-K., Cho, S.-B.: Adaptive fingerprint image enhancement with fingerprint image quality analysis. Image Vis. Comput. 24(1), 101–110 (2006)

    Article  Google Scholar 

  23. Bal, U., Engin, M., Utzinger, U.: A multiresolution approach for enhancement and denoising of microscopy images. SIViP. (2013). doi:10.1007/s11760-013-0510-x

  24. González, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Englewood Cliffs, NJ (2002)

    Google Scholar 

  25. Cherifi, D., Beghdadi, A., Belbachir, A.H.: Color contrast enhancement method using steerable pyramid transform. SIViP 4(2), 247–262 (2010)

    Article  MATH  Google Scholar 

  26. Hanmandlu, M., Jha, D.: An optimal fuzzy system for color image enhancement. IEEE Trans. Image Process 15(10), 2956–2966 (2006)

    Article  Google Scholar 

  27. Qing, W., Ward, R.K.: Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Trans. Consum. Electron 53(2), 757–764 (2007)

    Article  Google Scholar 

  28. Chen Hee, O., Isa, N.A.M.: Quadrants dynamic histogram equalization for contrast enhancement. IEEE Trans. Consum. Electron. 56(4), 2552–2559 (2010)

  29. Chen Hee, O., Isa, N.A.M.: Adaptive contrast enhancement methods with brightness preserving. IEEE Trans. Consum. Electron. 56(4), 2543–2551 (2010)

  30. Sen, D., Pal, S.K.: Automatic exact histogram specification for contrast enhancement and visual system based quantitative evaluation. IEEE Trans. Image Process. 20(5), 1211–1220 (2011)

    Article  MathSciNet  Google Scholar 

  31. Joung-Youn, K., Lee-Sup, K., Seung-Ho, H.: An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Trans. Circuits Syst. Video Technol. 11(4), 475–484 (2001)

    Article  Google Scholar 

  32. Chao, W., Zhongfu, Y.: Brightness preserving histogram equalization with maximum entropy: a variational perspective. IEEE Trans. Consum. Electron. 51(4), 1326–1334 (2005)

    Article  Google Scholar 

  33. Sengee, N., Sengee, A., Heung-Kook, C.: Image contrast enhancement using bi-histogram equalization with neighborhood metrics. IEEE Trans. Consum. Electron. 56(4), 2727–2734 (2010)

    Article  Google Scholar 

  34. Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752–1758 (2007)

    Article  Google Scholar 

  35. Lim, S., Isa, N.M., Ooi, C., Toh, K.: A new histogram equalization method for digital image enhancement and brightness preservation. SIViP. (2013). doi:10.1007/s11760-013-0500-z

  36. Thomas, G., Flores-Tapia, D., Pistorius, S.: Histogram specification: a fast and flexible method to process digital images. IEEE Trans. Instrum. Meas. 60(5), 1565–1578 (2011)

    Article  Google Scholar 

  37. Wang, C., Peng, J., Ye, Z.: Flattest histogram specification with accurate brightness preservation. Image Process. IET 2(5), 249–262 (2008)

    Article  Google Scholar 

  38. Abdullah-Al-Wadud, M., Kabir, M.H., Dewan, M.A.A., Oksam, C.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)

    Article  Google Scholar 

  39. Duan, J., Bressan, M., Dance, C., Qiu, G.: Tone-mapping high dynamic range images by novel histogram adjustment. Pattern Recognit. 43(5), 1847–1862 (2010)

    Article  Google Scholar 

  40. Land, E.: The retinex. Am. Sci. 52(2), 247–264 (1964)

    Google Scholar 

  41. Bai, X., Zhou, F., Xue, B.: Image enhancement using multi scale image features extracted by top-hat transform. Opt. Laser Technol. 44(2), 328–336 (2012)

    Article  Google Scholar 

  42. Eschbach, R.: Image-dependent exposure enhancement, Google Patents (1995)

  43. Pal, S.K., King, R.A.: Image enhancement using smoothing with fuzzy sets. IEEE Trans. Syst. Man Cybern. 11(7), 494–501 (1981)

    Article  Google Scholar 

  44. Chen, H.-C., Wang, W.-J.: Efficient impulse noise reduction via local directional gradients and fuzzy logic. Fuzzy Sets Syst. 160(13), 1841–1857 (2009)

    Article  MATH  Google Scholar 

  45. Cheng, H.D., Xu, H.: A novel fuzzy logic approach to mammogram contrast enhancement. Inf. Sci. 148(1–4), 167–184 (2002)

    Article  MATH  Google Scholar 

  46. Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., Chatterjee, J.: Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans. Consum. Electron. 56(4), 2475–2480 (2010)

    Article  Google Scholar 

  47. Hanmandlu, M., Verma, O.P., Kumar, N.K., Kulkarni, M.: A novel optimal fuzzy system for color image enhancement using bacterial foraging. IEEE Trans. Instrum. Meas. 58(8), 2867–2879 (2009)

    Article  Google Scholar 

  48. Verma, O.P., Kumar, P., Hanmandlu, M., Chhabra, S.: High dynamic range optimal fuzzy color image enhancement using Artificial Ant Colony System. Appl. Soft Comput. 12(1), 394–404 (2012)

    Article  Google Scholar 

  49. Vlachos, I., Sergiadis, G., Melin, P., Castillo, O., Aguilar, L., Kacprzyk, J., Pedrycz, W.: The role of entropy in intuitionistic fuzzy contrast enhancement foundations of fuzzy logic and soft computing. In: Lecture Notes in Computer Science, vol. 4529, pp. 104–113. Springer, Berlin (2007)

  50. Vlachos, I.K., Sergiadis, G.D.: Parametric indices of fuzziness for automated image enhancement. Fuzzy Sets Syst. 157(8), 1126–1138 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Cheng, H.D., Chen, J.-R.: Automatically determine the membership function based on the maximum entropy principle. Inf. Sci. 96(3–4), 163–182 (1997)

    Article  Google Scholar 

  52. Hasikin, K., Isa, N.A.M.: Enhancement of the low contrast image using fuzzy set theory. In: Computer Modelling and Simulation (UKSim), 2012 UKSim 14th International Conference on, 28–30 March 2012, pp. 371–376 (2012)

  53. Hasikin, K., Isa, N.A.M.: Adaptive fuzzy contrast factor enhancement technique for low contrast and nonuniform illumination images. SIViP. (2012). doi:10.1007/s11760-012-0398-x

  54. Aarnink, R., Pathak, S.D., de la Rosette, J.J.M.C.H., Debruyne, F.M.J., Kim, Y., Wijkstra, H.: Edge detection in prostatic ultrasound images using integrated edge maps. Ultrasonics 36(1–5), 635–642 (1998)

    Article  Google Scholar 

  55. Toet, A., Lucassen, M.P.: A new universal colour image fidelity metric. Displays 24(4–5), 197–207 (2003)

    Article  Google Scholar 

  56. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs, NJ (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Ashidi Mat Isa.

Additional information

This project is supported by the Ministry of Science, Technology & Innovation Malaysia through Sciencefund Grant entitled “Development of Computational Intelligent Infertility Detection System based on Sperm Motility Analysis”.

Appendices

Appendix 1

See Tables 3 and 4.

Table 3 Comparison of enhancement techniques for grayscale images
Table 4 Comparison of enhancement techniques for color images

Appendix 2

See Tables 567 and 8.

Table 5 Comparison of enhancement results based on image contrast \((C)\)
Table 6 Comparison of enhancement results based on image quality index \((Q)\)
Table 7 Comparison of enhancement results based on PL
Table 8 Comparison of enhancement results based on processing time \((t)\) (in s)

Appendix 3

1.1 Quantitative analysis for grayscale images

See Figs. 101112, and 13.

Fig. 10
figure 10

Error bars of image contrast for different enhancement techniques. Graph is plotted by computing average and standard deviation of image contrast for 150 grayscale images

Fig. 11
figure 11

Error bars of image quality index for different enhancement techniques. Graph is plotted by computing average and standard deviation of image contrast for 150 grayscale images

Fig. 12
figure 12

Error bars of PL for different enhancement techniques. Graph is plotted by computing average and standard deviation of image contrast for 150 grayscale images

Fig. 13
figure 13

Error bars of processing time for different enhancement techniques. Graph is plotted by computing average and standard deviation of image contrast for 150 grayscale image

Appendix 4

1.1 Quantitative analysis for color images

See Figs. 141516, and 17.

Fig. 14
figure 14

Error bars of image contrast for different enhancement techniques. Graph is plotted by computing average and standard deviation of image contrast for 150 color images

Fig. 15
figure 15

Error bars of image quality index for different enhancement techniques. Graph is plotted by computing average and standard deviation of image contrast for 150 color images

Fig. 16
figure 16

Error bars of PL for different enhancement techniques. Graph is plotted by computing average and standard deviation of image contrast for 150 color images

Fig. 17
figure 17

Error bars of processing time for different enhancement techniques. Graph is plotted by computing average and standard deviation of image

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasikin, K., Mat Isa, N.A. Adaptive fuzzy intensity measure enhancement technique for non-uniform illumination and low-contrast images. SIViP 9, 1419–1442 (2015). https://doi.org/10.1007/s11760-013-0596-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0596-1

Keywords

Navigation