Skip to main content
Log in

Watermarking 3D models using spectral mesh compression

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

We propose a robust and imperceptible spectral watermarking method for high rate embedding of a watermark into 3D polygonal meshes. Our approach consists of four main steps: (1) the mesh is partitioned into smaller sub-meshes, and then the watermark embedding and extraction algorithms are applied to each sub-mesh, (2) the mesh Laplacian spectral compression is applied to the sub-meshes, (3) the watermark data is distributed over the spectral coefficients of the compressed sub-meshes, (4) the modified spectral coefficients with some other basis functions are used to obtain uncompressed watermarked 3D mesh. The main attractive features of this approach are simplicity, flexibility in data embedding capacity, and fast implementation. Extensive experimental results show the improved performance of the proposed method, and also its robustness against the most common attacks including the geometric transformations, adaptive random noise, mesh smoothing, mesh cropping, and combinations of these attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cox I.J., Miller M.L., Bloom J.A.: Digital Watermarking. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  2. Benedens O.: Geometry-based watermarking of 3-D polygonal models. IEEE Comput. Graph. Appl. 19(1), 46–45 (1999)

    Article  Google Scholar 

  3. Harte, T., Bors, A.: Watermarking 3d models. In: Proceedings of IEEE International Conference on Image Processing, pp. 661–664 (2002)

  4. Ohbuchi R., Masuda H., Aono M.: Watermarking three-dimensional polygonal models through geometric and topological modifications. IEEE J. Selected Areas Commun. 16(4), 551–560 (1998)

    Article  Google Scholar 

  5. Praun, E., Hoppe, H., Finkelstein, A.: Robust mesh watermarking. In: Proceedings of SIGGRAPH, pp. 49–56 (1999)

  6. Ohbuchi, R., Takahashi, S., Miyasawa, T., Mukaiyama, A.: Watermarking 3-D polygonal meshes in the mesh spectral domain. In: Proceedings of Computer Graphics Interface, pp. 9–17 (2001)

  7. Qiu J.J., Ya D.M., Jun B.H., Sheng P.Q.: Watermarking on 3D mesh based on spherical wavelet transform. J. Zhejiang Univ. Sci. 5(3), 251–258 (2004)

    Article  Google Scholar 

  8. Li, L., Pan, Z., Zhang, M., Ye, K.: Watermarking subdivision surfaces based on addition property of Fourier transform. In: Proceedings of International Conference on Computer Graphics and Interactive Technology, pp. 46–49 (2004)

  9. Cotting, D., Weyrich, T., Pauly, M., Gross, M.: Robust watermarking of point-sampled geometry. In: Proceedings of International Conf.erence on Shape Modeling and Applications, pp. 233–242 (2004)

  10. Kwon, K., Kwon, S., Lee, S., Kim, T., Lee, K.: Watermarking for 3D polygonal meshes using normal vector distributions of each patch. In: Proceedings of International Conference Image Process, pp. 499–502 (2003)

  11. Zafeiriou S., Tefas A., Pitas I.: Blind robust watermarking schemes for copyright protection of 3D mesh objects. IEEE Trans. Vis. Comput. Graph. 11(5), 596–607 (2005)

    Article  Google Scholar 

  12. Garcia E., Dugelay J.L.: Texture-based watermarking of 3-D video objects. IEEE Trans. Circuits Syst. Video Technol. 13(8), 853–866 (2003)

    Article  Google Scholar 

  13. Cho J.W., Prost R., Jung H.Y.: An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms. IEEE Trans. Signal Process. 55(1), 142–155 (2007)

    Article  MathSciNet  Google Scholar 

  14. Uccheddu, F., Corsini, M., Barni, M.: Wavelet-based blind watermarking of 3d models. In: Proceedings of ACM Multimedia and Security Workshop, pp. 143–154 (2004)

  15. Wu J., Kobbelt L.: Efficient spectral watermarking of large meshes with orthogonal basis functions. Vis. Comput. 21(8–10), 848–857 (2005)

    Article  Google Scholar 

  16. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of SIGGRAPH, pp. 279–286 (2000)

  17. Karypis, G., Kumar, V.: MeTiS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fillreducing orderings of sparse matrices, Version 4.0, University of Minnesota, Department of Computer Science (1998)

  18. Ben Hamza A., Krim H.: Geodesic matching of triangulated surfaces. IEEE Trans. Image Process. 15(8), 2249–2258 (2006)

    Article  Google Scholar 

  19. Besl J.B., Mckay D.N.: A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Machine Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  20. Mian A.S., Bennamoun M., Owens R.: A novel representation and feature matching algorithm for automatic pairwise registration of range images. Int. J. Comput. Vis. 66(1), 19–40 (2006)

    Article  Google Scholar 

  21. Ohbuchi R., Mukaiyama A., Takahashi S.: A Frequency domain approach to watermarking 3D shapes. Comput. Graph. Forum 21(3), 373–382 (2002)

    Article  Google Scholar 

  22. Zhang, Y., Ben Hamza, A.: PDE-based smoothing for 3D mesh quality improvement. In: Proceedings of IEEE International Conference on Electro/Information Technology, pp. 334–337 (2006)

  23. Rey W.J.: Introduction to Robust and Quasi-robust Statistical Methods. Springer, Berlin (1983)

    MATH  Google Scholar 

  24. Alface, P.R., Craene, M.D., Macq, B.: Three-dimensional image quality measurement for the benchmarking of 3D watermarking schemes. In: Proceedings of Secu., Steganography, and Watermarking of Multimedia Contents, pp. 230–240 (2005)

  25. Voloshynovskiy S., Pereira S., Pun T., Eggers J.J., Su J.K.: Attacks on digital watermarks: classification, estimation based attacks, and benchmarks. IEEE Commun. Mag. 39(8), 118–126 (2001)

    Article  Google Scholar 

  26. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Attacks on copyright marking systems. In: Proceedings of Workshop Info. Hiding, pp. 218–238 (1998)

  27. Vollmer, J., Mencl, R., Muller, H.: Improved Laplacian smoothing of noisy surface meshes. In: Proceedings of EUROGRAPHICS, pp. 131–138 (1999)

  28. Gumhold, S., Strasser, W.: Real time compression of triangle mesh connectivity. In: Proceedings of SIGGRAPH, pp. 133–140 (1998)

  29. Isenburg, M., Snoeyink, J.: Mesh collapse compression. In: Proceedings of 12th Brazilian Symposium on Computer Graphics Image Process, pp. 27–28 (1999)

  30. Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: Proceedings of SIGGRAPH, pp. 209–216 (1997)

  31. Guskov, I., Sweldens, W., Schroeder, P.: Multiresolution signal processing for meshes. In: Proceedings of SIGGRAPH, pp. 325–334

  32. Cayre F., Alface P.R., Schmitt F., Macq B., Maître H.: Application of spectral decomposition to compression and watermarking of 3D triangle mesh geometry. Signal Process. Image Commun. 18(4), 309–319 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad E. Abdallah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdallah, E.E., Ben Hamza, A. & Bhattacharya, P. Watermarking 3D models using spectral mesh compression. SIViP 3, 375–389 (2009). https://doi.org/10.1007/s11760-008-0079-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-008-0079-y

Keywords

Navigation