Skip to main content
Log in

Review and comparative evaluation of symbolic dynamic filtering for detection of anomaly patterns

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Symbolic dynamic filtering (SDF) has been recently reported in literature as a pattern recognition tool for early detection of anomalies (i.e., deviations from the nominal behavior) in complex dynamical systems. This paper presents a review of SDF and its performance evaluation relative to other classes of pattern recognition tools, such as Bayesian Filters and Artificial Neural Networks, from the perspectives of: (i) anomaly detection capability, (ii) decision making for failure mitigation and (iii) computational efficiency. The evaluation is based on analysis of time series data generated from a nonlinear active electronic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ray A.: Symbolic dynamic analysis of complex systems for anomaly detection. Signal Process.G 84(7), 1115–1130 (2004)

    Article  MATH  Google Scholar 

  2. Gupta S., Ray A., Mukhopadhyay A.: Anomaly detection in thermal pulse combustors using symbolic time series analysis. Proc. I Mech. I: J. Syst. Control Eng. 220(5), 339–351 (2006)

    Article  Google Scholar 

  3. Gupta S., Ray A., Keller E.: Symbolic time series analysis of ultrasonic data for early detection of fatigue damage. Mech. Syst. Signal Process. 21(2), 866–884 (2007)

    Article  Google Scholar 

  4. Rajagopalan V., Ray A., Samsi R., Mayer J.: Pattern identification in dynamical systems via symbolic time series analysis. Pattern Recognit. 40(11), 2897–2907 (2007)

    Article  MATH  Google Scholar 

  5. Rajagopalan V., Ray A.: Symbolic time series analysis via wavelet-based partitioning. Signal Process. 86(11), 3309–3320 (2006)

    Article  Google Scholar 

  6. Gupta S., Ray A.: Pattern identification using lattice spin systems: A thermodynamic formalism. Appl. Phys. Lett. 91(19), 194105 (2007)

    Article  Google Scholar 

  7. Jazwinski A.H.: Stochastic Processes and Filtering Theory. Academic Press, New York (1970)

    MATH  Google Scholar 

  8. Arulampalam M.S., Maskell S., Gordon N., Clapp T.: A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  9. Andrieu C., Doucet A., Singh S., Tadic V.B.: Particle methods for change detection, system identification, and control. Proc. IEEE 92(3), 423–438 (2004)

    Article  Google Scholar 

  10. Julier S., Uhlmann J., Durrant-Whyte H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Automat. Control 45(3), 477–482 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Li P., Kadirkamanathan V.: Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems. IEEE Trans. Syst. Cybern. 31(3), 337–343 (2001)

    Article  Google Scholar 

  12. Duda R.O., Hart P.E., Stork D.G.: Pattern Classification, 2nd edn. Wiley Interscience, New York (2001)

    MATH  Google Scholar 

  13. Liu J., Scherpen J.M.A.: Fault detection method for nonlinear systems based on probabilistic neural network filtering. Int. J. Syst. Sci. 33(13), 1039–1050 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Haykin S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  15. Fukunaga K.: Statistical Pattern Recognition, 2nd en. Academic Press, Boston (1990)

    Google Scholar 

  16. Shawe-Taylor J.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  17. Eckmann J.P., Ruelle D.: Ergodic theory of chaos and strange attractors. Rev. Modern Phys. 57(3), 617–656 (1985)

    Article  MathSciNet  Google Scholar 

  18. Lind D., Marcus M.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  19. Cover T.M., Thomas J.A.: Elements of Information Theory, 1st edn. Wiley Interscience, New York (1991)

    MATH  Google Scholar 

  20. Gupta S., Ray A.: Real-time fatigue life estimation in mechanical structures. Meas. Sci. Technol. 18, 1947–1957 (2007)

    Article  Google Scholar 

  21. Beck C., Schlögel F.: Thermodynamics of Chaotic Systems: An Introduction. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  22. Kantz H., Schreiber T.: Nonlinear Time Series Analysis, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  23. Badii R., Politi A.: Complexity, Hierarchical Structures and Scaling in Physics. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  24. Buhl M., Kennel M.: Statistically relaxing to generating partitions for observed time-series data. Phys. Rev. E 71(4), 046213 (2005)

    Article  MathSciNet  Google Scholar 

  25. Mallat S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, Boston (1998)

    MATH  Google Scholar 

  26. Ray A.: Signed real measure of regular languages for discrete-event supervisory control. Int. J. Control 78(12), 949–967 (2005)

    Article  MATH  Google Scholar 

  27. Bapat R., Raghavan T.: Nonnegative Matrices and Applications. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  28. Nørgaard M., Ravn O., Poulsen N.K., Hansen L.K.: Neural Networks for Modelling and Control of Dynamic Systems. Springer, London (2000)

    Google Scholar 

  29. Gupta S., Ray A., Keller E.: Fatigue damage monitoring by ultrasonic measurements: A symbolic time series analysis approach. Int. J. Fatigue 29(6), 1100–1114 (2007)

    Article  MATH  Google Scholar 

  30. Khatkhate A., Ray A., Keller E., Gupta S., Chin S.: Symbolic time series analysis for anomaly detection in mechanical systems. IEEE/ASME Trans. Mechatron. 11(4), 439–447 (2006)

    Article  Google Scholar 

  31. Thompson J.M.T., Stewart H.B.: Nonlinear Dynamics and Chaos. Wiley, Chichester (1986)

    MATH  Google Scholar 

  32. Subbu A., Ray A.: Space partitioning via hilbert transform for symbolic time series analysis. Appl. Phys. Lett. 92(8), 084107 (2008)

    Article  Google Scholar 

  33. Chakraborty, S., Sarkar, S., Ray, A.: Symbolic identification and anomaly detection in complex dynamical systems. In: Proceedings of American Control Conference, Seattle (2008)

  34. Tan K., Huang S., Lee T.: Fault detection and diagnosis using neural network design. In: Third International Symposium on Neural Networks, ISNN 2006, Proceedings—Part III, pp. 364–369 (2006)

  35. Patton R.J., Chen J.: Neural networks in fault diagnosis of nonlinear dynamic systems. Eng. Simulation 13, 905–924 (1996)

    Google Scholar 

  36. Sreedhar, R., Fernandez, B., Masada, G.: Neural network based adaptive fault detection scheme. In: Proceedings of the American Control Conference, vol. 5, pp. 3259–3263 (1995)

  37. Hagan M., Demuth H., Beale M.: Neural Network Design, 1st edn. PWS Publishing, Boston (1996)

    Google Scholar 

  38. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The rprop algorithm. In: Proceedings of the IEEE International Conference on Neural Networks (1993)

  39. Kerschen G., Golinval J.-C.: Non-linear generalization of principal component analysis: From a global to a local approach. J Sound Vibrat. 254(5), 867–876 (2002)

    Article  MathSciNet  Google Scholar 

  40. Jakubek S.M., Strasser T.: Artificial neural networks for fault detection in large-scale data acquisition systems. Eng. Appl. Artif. Intell. 17, 233–248 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asok Ray.

Additional information

This work has been supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under Grant No. W911NF-07-1-0376, by the U.S. Office of Naval Research under Grant No. N00014-08-1-380, and by NASA under Cooperative Agreement No. NNX07AK49A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, C., Ray, A., Sarkar, S. et al. Review and comparative evaluation of symbolic dynamic filtering for detection of anomaly patterns. SIViP 3, 101–114 (2009). https://doi.org/10.1007/s11760-008-0061-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-008-0061-8

Keywords

Navigation