Skip to main content
Log in

A stochastic ordering based on the canonical transformation of skew-normal vectors

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

In this paper, we define a new skewness ordering that enables stochastic comparisons for vectors that follow a multivariate skew-normal distribution. The new ordering is based on the canonical transformation associated with the multivariate skew-normal distribution and on the well-known convex transform order applied to the only skewed component of such canonical transformation. We examine the connection between the proposed ordering and the multivariate convex transform order studied by Belzunce et al. (TEST 24(4):813–834, 2015). Several standard skewness measures like Mardia’s and Malkovich–Afifi’s indices are revisited and interpreted in connection with the new ordering; we also study its relationship with the J-divergence between skew-normal and normal random vectors and with the Negentropy. Some artificial data are used in simulation experiments to illustrate the theoretical discussion; a real data application is provided as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (eds) (1965) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1st edn. Dover Publications, New York

    MATH  Google Scholar 

  • Adcock C (2004) Capital asset pricing for UK stocks under the multivariate skew-normal distribution. Chapman and Hall/CRC, London, pp 191–204

    Google Scholar 

  • Adcock C, Eling M, Loperfido N (2015) Skewed distributions in finance and actuarial science: a review. Eur J Finance 21(13–14):1253–1285

    Article  Google Scholar 

  • Arellano-valle RB, Genton MG (2010) Multivariate unified skew-elliptical distributions. Chil J Stat 1(1):17–33

    MathSciNet  MATH  Google Scholar 

  • Arevalillo JM, Navarro H (2012) A study of the effect of kurtosis on discriminant analysis under elliptical populations. J Multivar Anal 107:53–63

    Article  MathSciNet  MATH  Google Scholar 

  • Arevalillo JM, Navarro H (2015) A note on the direction maximizing skewness in multivariate skew-t vectors. Stat Probab Lett 96:328–332

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold BC, Groeneveld RA (1995) Measuring skewness with respect to the mode. Am Stat 49(1):34–38

    MathSciNet  Google Scholar 

  • Azzalini A (2005) The skew-normal distribution and related multivariate families. Scand J Stat 32(2):159–188

    Article  MathSciNet  MATH  Google Scholar 

  • Azzalini A (2016) The R package sn: the skew-normal and skew-\(t\) distributions (version 1.4–0). Università di Padova, Italia

    Google Scholar 

  • Azzalini A, Capitanio A (1999) Statistical applications of the multivariate skew normal distribution. J R Stat Soc Ser B (Stat Methodol) 61(3):579–602

    Article  MathSciNet  MATH  Google Scholar 

  • Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J Roy Stat Soc B 65(2):367–389

    Article  MathSciNet  MATH  Google Scholar 

  • Azzalini A, Capitanio A (2014) The skew-normal and related families. IMS monographs. Cambridge University Press, Cambridge

    Google Scholar 

  • Azzalini A, Dalla Valle A (1996) The multivariate skew-normal distribution. Biometrika 83(4):715–726

    Article  MathSciNet  MATH  Google Scholar 

  • Azzalini A, Regoli G (2012) Some properties of skew-symmetric distributions. Ann Inst Stat Math 64(4):857–879

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan N, Scarpa B (2012) Multivariate measures of skewness for the skew-normal distribution. J Multivar Anal 104(1):73–87

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan N, Capitanio A, Scarpa B (2014) A test for multivariate skew-normality based on its canonical form. J Multivar Anal 128:19–32

    Article  MathSciNet  MATH  Google Scholar 

  • Baricz A (2008) Mills’ ratio: monotonicity patterns and functional inequalities. J Math Anal Appl 340(2):1362–1370

    Article  MathSciNet  MATH  Google Scholar 

  • Belzunce F, Mulero J, Ruíz MJ, Suárez-Llorens A (2015) On relative skewness for multivariate distributions. TEST 24(4):813–834

    Article  MathSciNet  MATH  Google Scholar 

  • Branco MD, Dey DK (2001) A general class of multivariate skew-elliptical distributions. J Multivar Anal 79(1):99–113

    Article  MathSciNet  MATH  Google Scholar 

  • Capitanio A (2012) On the canonical form of scale mixtures of skew-normal distributions. arXiv:1207.0797

  • Capitanio A, Azzalini A, Stanghellini E (2003) Graphical models for skew-normal variates. Scand J Stat 30(1):129–144

    Article  MathSciNet  MATH  Google Scholar 

  • Contreras-Reyes JE, Arellano-Valle RB (2012) Kullback–Leibler divergence measure for multivariate skew-normal distributions. Entropy 14(9):1606–1626

    Article  MathSciNet  MATH  Google Scholar 

  • Cook R, Weisberg S (2009) An introduction to regression graphics. Wiley series in probability and statistics. Wiley, New York

    Google Scholar 

  • Counsell N, Cortina-Borja M, Lehtonen A, Stein A (2011) Modelling psychiatric measures using skew-normal distributions. Eur Psychiatry J Assoc Eur Psychiatr 26(2):112–114

    Article  Google Scholar 

  • Franceschini C, Loperfido N (2016) MaxSkew: orthogonal data projections with maximal skewness. R package version 1.0. https://CRAN.R-project.org/package=MaxSkew. Accessed 22 Feb 2017

  • Genton M (2004) Skew-elliptical distributions and their applications: a journey beyond normality. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Genton M, Loperfido N (2005) Generalized skew-elliptical distributions and their quadratic forms. Ann Inst Stat Math 57(2):389–401

    Article  MathSciNet  MATH  Google Scholar 

  • Hardin J, Wilson J (2009) A note on oligonucleotide expression values not being normally distributed. Biostatistics 10(3):446–450

    Article  Google Scholar 

  • Landsman Z, Makov U, Shushi T (2017) Extended generalized skew-elliptical distributions and their moments. Sankhya A Indian J Stat 79(1):76–100

    Article  MathSciNet  MATH  Google Scholar 

  • Loperfido N (2010) TEST. Canonical transformations of skew-normal variates 19(1):146–165

    MathSciNet  Google Scholar 

  • Loperfido N (2013) Skewness and the linear discriminant function. Stat Probab Lett 83(1):93–99

    Article  MathSciNet  MATH  Google Scholar 

  • MacGillivray HL (1986) Skewness and asymmetry: measures and orderings. Ann Stat 14(3):994–1011. https://doi.org/10.1214/aos/1176350046

    Article  MathSciNet  MATH  Google Scholar 

  • Main P, Arevalillo JM, Navarro H (2015) Local effect of asymmetry deviations from Gaussianity using information-based measures. In: Proceedings of the 2nd international electronic conference on entropy and its applications, vol 2, pp 15–30

  • Malkovich JF, Afifi AA (1973) On tests for multivariate normality. J Am Stati Assoc 68(341):176–179

    Article  Google Scholar 

  • Mardia KV (1970) Measures of multivariate skewness and kurtosis with applications. Biometrika 57:519–530

    Article  MathSciNet  MATH  Google Scholar 

  • Marshall A, Olkin I (2007) Life distributions: structure of nonparametric, semiparametric, and parametric families. Springer series in statistics. Springer, New York

    MATH  Google Scholar 

  • Oja H (1981) On location, scale, skewness and kurtosis of univariate distributions. Scand J Stat 8(3):154–168

    MathSciNet  MATH  Google Scholar 

  • Pearson K (1895) Contributions to the mathematical theory of evolution. ii. skew variation in homogeneous material. Philos Trans R Soc Lond A Math Phys Eng Sci 186:343–414

    Google Scholar 

  • Revelle W (2016) psych: procedures for psychological, psychometric, and personality research. Northwestern University, Evanston. R package version 1.6.9. https://CRAN.R-project.org/package=psych. Accessed 22 Feb 2017

  • Taniguchi M, Petkovic A, Kase T, DiCiccio T, Monti AC (2015) Robust portfolio estimation under skew-normal return processes. Eur J Finance 21:1091–1112

    Article  Google Scholar 

  • Van Zwet WR (1964) Convex transformations of random variables. Mathematish Centrum, Amsterdam

    MATH  Google Scholar 

  • Vernic R (2006) Multivariate skew-normal distributions with applications in insurance. Insurance Math Econ 38:413–426

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J (2009) A family of kurtosis orderings for multivariate distributions. J Multivar Anal 100(3):509–517

    Article  MathSciNet  MATH  Google Scholar 

  • Zadkarami MR, Rowhani M (2010) Application of skew-normal in classification of satellite image. J Data Sci 8:597–606

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the reviewers for helpful comments that enriched the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge M. Arevalillo.

Appendix

Appendix

Lemma 1

(Sign patterns) Let us consider \(\alpha _1\) and \(\alpha _2\) nonnegative parameters such that \(0< \alpha _1< \alpha _2\). The function m defined by

$$\begin{aligned} m(x)=-\frac{x^2}{2}+\frac{(a+bx)^2}{2}+\log \varPhi (\alpha _1 x)-\log \varPhi (\alpha _2(a+bx))-\log b\text{: } x\in {\mathbb {R}}, \end{aligned}$$

with \(b>0\), has one, two or three zeros.

Proof

We know that \(\hbox {e}^{m(x)}\) is the quotient of the densities of two scalar random variables S and Z such that \(S\sim \hbox {SN}_1(0,1,\alpha _1)\) and \(\displaystyle Z=\frac{T-a}{b}\) with \(T\sim \hbox {SN}_1(0,1,\alpha _2)\). Therefore, we can assert that the number of zeros of the function m is at least one. Since m can be rewritten as \(m(x)=m_1(x)-m_2(x)\), with \(\displaystyle m_1(x)= -\frac{x^2}{2}+\log \varPhi (\alpha _1 x)\) and \(\displaystyle m_2(x)=-\frac{(a+bx)^2}{2}+\log \varPhi (\alpha _2(a+bx))+\log b\), the number of intersections between \(m_1\) and \(m_2\) gives the number of zeros of m. We now examine the behavior of both functions.

$$\begin{aligned} \lim _{x\rightarrow -\infty }m_1(x)=\lim _{x\rightarrow \infty }m_1(x)=-\infty \quad \text{ and } \quad m_1(x)<0\text{, } x\in {\mathbb {R}}. \end{aligned}$$
(11)

The first derivative of \(m_1\) is given by

$$\begin{aligned} m_1^\prime (x)=-x+\frac{\alpha _1\phi (\alpha _1 x)}{\varPhi (\alpha _1 x)}=-x+\frac{\alpha _1}{\frac{1}{\phi (\alpha _1 x)}-r(\alpha _1 x)} \text{, } \text{ with } r(t)=\frac{1-\varPhi (t)}{\phi (t)} \end{aligned}$$

for \(t>0\) the well-known Mills’ ratio, which is a convex and strictly decreasing function Baricz (2008). Therefore, when \(x>0\) we get

$$\begin{aligned} \displaystyle m_1^{\prime \prime }(x)=-1-\frac{\alpha _1}{(\frac{1}{\phi (\alpha _1 x)}-r(\alpha _1 x))^2}\left( \frac{\alpha _1^2 x}{\phi (\alpha _1 x)}-\alpha _1 r^\prime (\alpha _1 x)\right) <0. \end{aligned}$$

When \(x<0\), taking into account that \(\displaystyle m_1^\prime (x)=-x+\frac{\alpha _1\phi (\alpha _1 x)}{1-\varPhi (-\alpha _1 x)}=-x+\frac{\alpha _1}{r(-\alpha _1 x)}\) we obtain once again that

$$\begin{aligned} m_1^{\prime \prime }(x)=-1+\frac{\alpha _1^2}{r(-\alpha _1 x)^2}r^\prime (-\alpha _1 x)<0. \end{aligned}$$

Therefore, \(m_1\) is a negative concave function having a unique maximum.

On the other hand, for \(m_2\) it is straightforward to show that, as long \(b\le 1\), we have

$$\begin{aligned} \lim _{x\rightarrow -\infty }m_2(x)=\lim _{x\rightarrow \infty }m_2(x)=-\infty \text{ with } m_2(x)<0 \text{, } x\in {\mathbb {R}}. \end{aligned}$$
(12)

Now, using an analogous argument as previously for \(m_1\) we conclude that \(m_2\) is a negative concave function with a unique maximum provided that \(b\le 1\). Similarly, when \(b>1\) we can see that \(m_2\) is a concave function with two zeros, being nonnegative between the zeros.

Next, we study the asymptotic relative positions of \(m_1\) and \(m_2\), as well as the limit behavior of the function m.

Firstly, we calculate the limit

$$\begin{aligned} \displaystyle \lim _{x\rightarrow \infty } m(x)= & {} \frac{a^2}{2}-\log b+\lim _{x\rightarrow \infty }\left( \frac{(b^2-1)x^2}{2}+abx\right) \nonumber \\= & {} {\left\{ \begin{array}{ll} -\infty &{} \quad \text{ if } b<1 \, \text{ or } \text{ if } \,b=1 \, \text{ and } \,a<0 \\ \infty &{} \quad \text{ if } b>1 \text{ or } \text{ if } b=1 \, \text{ and } \,a>0 \\ \end{array}\right. }. \end{aligned}$$
(13)

Secondly, we need the limit

$$\begin{aligned} \displaystyle \lim _{x\rightarrow -\infty } m(x)=\frac{a^2}{2}-\log b+\lim _{x\rightarrow -\infty } x^2\left[ \frac{b^2-1}{2}+\frac{ab}{x}+\frac{1}{x^2}\log \left( \frac{\varPhi (\alpha _1 x)}{\varPhi (\alpha _2(a+bx))}\right) \right] . \end{aligned}$$

The calculus of this limit requires looking into some details about the asymptotic behavior of the last summand in the expression above. We sketch the computations as follows: Taking into account that

$$\begin{aligned}&\displaystyle \lim _{x\rightarrow -\infty }\frac{\varPhi (\alpha _1 x)}{\varPhi (\alpha _2(a+bx))}=\frac{\alpha _1}{\alpha _2 b}\lim _{x\rightarrow -\infty }\frac{\phi (\alpha _1 x)}{\phi (\alpha _2(a+bx))}\\&\quad =\frac{\alpha _1}{\alpha _2 b}\exp \left\{ \lim _{x\rightarrow -\infty }\left( -\frac{\alpha _1^2x^2}{2}+\frac{\alpha _2^2(a+bx)^2}{2}\right) \right\} =0 \, \text{ or } \,\infty , \end{aligned}$$

depending on whether the limit of the exponential equals \(-\infty \) or \(\infty \), we would obtain that \(\displaystyle \lim \nolimits _{x\rightarrow -\infty }\log \left( \frac{\varPhi (\alpha _1 x)}{\varPhi (\alpha _2(a+bx))}\right) =\pm \,\infty \). It then stands to reason the application of L’hopital’s rule in order to get

$$\begin{aligned} \lim _{x\rightarrow -\infty }\frac{1}{x^2}\log \left( \frac{\varPhi (\alpha _1 x)}{\varPhi (\alpha _2(a+bx))}\right)= & {} \lim _{x\rightarrow -\infty }\frac{1}{2x}\left[ \frac{\alpha _1\phi (\alpha _1 x)}{\varPhi (\alpha _1 x)}- \frac{b\alpha _2\phi (\alpha _2(a+bx))}{\varPhi (\alpha _2(a+bx))}\right] \\= & {} \lim _{x\rightarrow -\infty }\frac{1}{2x}\left[ b\alpha _2^2(a+bx)-\alpha _1^2x\right] =\frac{b^2\alpha _2^2-\alpha _1^2}{2}, \end{aligned}$$

where the steps in the previous expressions have been carried out using the relation between the quotients in the square brackets and the Mills’ ratio together with the asymptotic expansion of the Mills’ ratio (Abramowitz and Stegun 1965, (26.2.12)). Consequently,

$$\begin{aligned} \displaystyle \lim _{x\rightarrow -\infty } m(x)=\frac{a^2}{2}-\log b+\lim _{x\rightarrow -\infty } x^2\left( \frac{b^2-1}{2}+\frac{ab}{x}+\frac{b^2\alpha _2^2-\alpha _1^2}{2}\right) \end{aligned}$$

whose result, that depends on the signs of the difference \(b^2(\alpha _2^2+1)-(\alpha _1^2+1)\) and a, can be established as follows:

$$\begin{aligned} \lim _{x\rightarrow -\infty }m(x)= {\left\{ \begin{array}{ll} -\infty &{} \quad \text{ if } b<\sqrt{\frac{\alpha _1^2+1}{\alpha _2^2+1}}\, \text{ or } \text{ if } \,b=\sqrt{\frac{\alpha _1^2+1}{\alpha _2^2+1}} \, \text{ and } \,a>0 \\ \infty &{} \quad \text{ if } b>\sqrt{\frac{\alpha _1^2+1}{\alpha _2^2+1}} \, \text{ or } \text{ if } \, b=\sqrt{\frac{\alpha _1^2+1}{\alpha _2^2+1}} \, \text{ and } \,a<0 \\ \end{array}\right. } \end{aligned}$$
(14)

The limits (13) and (14) along with the fact \(\sqrt{\frac{\alpha _1^2+1}{\alpha _2^2+1}}<1\), resulting from the condition of the statement, are suggesting the cases to be considered in items (i)–(vii). For all of them, we will take into account that both \(m_1\) and \(m_2\) are concave functions with a unique maximum.

Before studying the sign pattern of the function m in all these cases, let us introduce some notation: The symbol − is used to denote negativity, and the symbol \(+\) is for positivity; for example, with the pattern \(-+\) we denote that a function is changing from negative to positive.

  1. (i)

    \( 0<b<\sqrt{\frac{\alpha _1^2+1}{\alpha _2^2+1}} \). In this case, taking into account the conclusions derived in (13) and (14), we obtain: \(\displaystyle \lim \nolimits _{x\rightarrow -\infty }m(x)=\lim \nolimits _{x\rightarrow \infty }m(x)=-\infty \), which implies that \(m_1\) and \(m_2\) have two intersection points and the function m has two zeros with sign pattern \(-+-\).

  2. (ii)

    \( \sqrt{\frac{\alpha _1^2+1}{\alpha _2^2+1}}<b<1 \). Now, the results obtained in (13) and (14) lead to the following limits: \(\displaystyle \lim \nolimits _{x\rightarrow -\infty }m(x)=\infty \) and \(\displaystyle \lim \nolimits _{x\rightarrow \infty }m(x)=-\infty \), from which we can deduce that \(m_1\) and \(m_2\) may intersect once or three times, depending on the values of a. Hence, m may have one or three zeros with respective sign patterns \(+-\) and \(+-+-\).

  3. (iii)

    \( b>1 \). In this case, from (13) and (14) we obtain: \(\lim \nolimits _{x\rightarrow -\infty }m(x)=\lim _{x\rightarrow \infty }m(x)=\infty \), which implies that \(m_1\) and \(m_2\) will intersect one each other twice and m has two zeros with sign pattern \(+-+\).

  4. (iv)

    \( b=1, a>0 \). For this case, once again \(\lim \nolimits _{x\rightarrow -\infty }m(x)=\lim _{x\rightarrow \infty }m(x)=\infty \) and m will have two zeros with the same sign pattern as in (iii).

  5. (v)

    \( b=1, a<0 \). This case leads to the same limits as those in item (ii): \(\displaystyle \lim \nolimits _{x\rightarrow -\infty }m(x)=\infty \) and \(\displaystyle \lim \nolimits _{x\rightarrow \infty }m(x)=-\infty \). However, in this case m has only one zero, with \(+-\) sign pattern, due to the stochastic dominance of the distribution functions of variables S and \(Z=T-a\).

  6. (vi)

    \( b=\sqrt{\frac{\alpha _1^2+1}{\alpha _2^2+1}}, a>0 \). In this case, m has the same limit behavior as in item (i), so that it has two zeros with sign pattern \(-+-\).

  7. (vii)

    \( b=\sqrt{\frac{\alpha _1^2+1}{\alpha _2^2+1}}, a<0 \). This case leads to the same limits for m as in item (ii) so the function m may have one or three zeros which in turn yield the sign patterns \(+-\) and \(+-+-\), respectively.

The conclusions derived in all these previous cases prove the statement of the lemma.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arevalillo, J.M., Navarro, H. A stochastic ordering based on the canonical transformation of skew-normal vectors. TEST 28, 475–498 (2019). https://doi.org/10.1007/s11749-018-0583-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-018-0583-5

Keywords

Mathematics Subject Classification

Navigation