Skip to main content

Abstract

The extended skew-normal (ESN) distribution includes the normal one as a special case. Unfortunately, its information matrix is singular under normality, thus preventing application of standard likelihood-based methods for testing the null hypothesis of normality. The paper shows that for univariate ESN distributions the sample skewness provides the locally most powerful test for normality among the location and scale invariant ones. The generalization to multivariate ESN distributions considers projections of the data onto the direction corresponding to maximal skewness. Related computational problems simplifies for the multivariate ESN distribution, where the direction maximizing skewness is shown to have a simple parametric interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adcock, C.J.: Capital asset pricing for UK stocks under the multivariate skew-normal distribution. In: Genton, M. G. (ed.) Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality, pp. 191–204. Chapman and Hall / CRC, Boca Raton (2004)

    Google Scholar 

  2. Adcock, C.J.: Extensions of Stein’s Lemma for the Skew-Normal Distribution. Communications in Statistics — Theory and Methods 36, 1661–1671 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adcock, C.J.: Asset pricing and portfolio selection based on the multivariate extended skew-student-I distribution. Annals of operations research 176, 221–234 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Adcock, C.J., Shutes, K.: Portfolio selection based on the multivariate skew normal distribution. In: Skulimowski, A. (ed.) Financial modelling (2001)

    Google Scholar 

  5. Andrews, D.F., Gnanadesikan, R., Warner, J.L.: Methods for assessing multivariate normality. In: Krishnaiah, P.R. (ed.) Proc. International Symposisum Multivariate Analysis 3, pp. 95–116. Academic Press, New York (1973)

    Google Scholar 

  6. Arellano-Valle, R.B., Azzalini, A.: The centred parametrization for the multivariate skew-normal distribution. Journal of Multivariate Analysis 99, 1362–1382 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Arnold, B.C., Beaver, R.J.: Hidden truncation models. Sankhya, series A62, 22–35 (2000)

    Google Scholar 

  8. Arnold, B.C., Beaver, R.J.: Skewed multivariate models related to hidden truncation and/or selective reporting (with discussion). Test 11, 7–54 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Arnold, B.C., Beaver, R.J.: Elliptical models subject to hidden truncation or selective sampling. In: Genton, M.G. (ed.) Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality, pp. 101–112. Chapman and Hall / CRC, Boca Raton, FL (2004)

    Google Scholar 

  10. Azzalini, A., Capitanio, A.: Statistical applications of the multivariate skew-normal distributions. Journal of the Royal Statistical Society B 61, 579–602 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Azzalini, A., Dalla Valle, A.: The multivariate skew-normal distribution. Biometrika 83, 715–726 (1996)

    MATH  MathSciNet  Google Scholar 

  12. Birnbaum, Z.W.: Effect of linear truncation on a multinormal population. Annals of Mathematical Statistics 21, 272–279 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  13. Capitanio, A., Azzalini, A., Stanghellini, E.: Graphical models for skew-normal variates. Scandinavian Journal of Statistics 30, 129–144 (2003)

    Article  MathSciNet  Google Scholar 

  14. Copas, J.B., Li, H.G.: Inference for non-random samples (with discussion). Journal of the Royal Statistical Society B 59, 55–95 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Crocetta, C., Loperfido, N.: Maximum Likelihood Estimation of Correlation between Maximal Oxygen Consumption and the Six-Minute Walk Test in Patients with Chronic Heart Failure. Journal of Applied Statistics 36, 1101–1108 (2009)

    Article  MathSciNet  Google Scholar 

  16. Heckman, J.J.: Sample selection bias as a specification error. Econometrica 47, 153–161 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Henze, N.: A Probabilistic Representation of the “Skew-Normal” Distribution. Scandinavian Journal of Statistics 13, 271–275 (1986)

    MATH  MathSciNet  Google Scholar 

  18. Huber, P.J.: Projection pursuit (with discussion). Annals of Statistics 13, 435–475 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. Loperfido, N., Guttorp, P.: Network bias in air quality monitoring design. Environmetrics 19, 661–671 (2008)

    Article  MathSciNet  Google Scholar 

  20. Loperfido, N.: Modeling Maxima of Longitudinal Contralateral Observations. TEST 17, 370–380 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Loperfido, N.: Canonical Transformations of Skew-Normal Variates. TEST 19, 146–165 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kumbhakar, S.C., Ghosh, S., McGuckin, J.T.: A generalized production frontier approach for estimating determinants of inefficiency in US dairy farms. Journal of Business and Economice Statistics 9, 279–286 (1991)

    Google Scholar 

  23. Malkovich, J.F., Afifi, A.A.: On tests for multivariate normality. Journal of the American Statistical Association 68, 176–179 (1973)

    Article  Google Scholar 

  24. Mardia, K.V.: Measures of multivariate skewness and kurtosis with applications. Biometrika 57, 519–530 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mardia, K.V.: Assessment of Multinormality and the Robustness of Hotelling’s T2 Test. Applied Statistics 24, 163–171 (1975)

    Article  MathSciNet  Google Scholar 

  26. McCullagh, P.: Tensor Methods in Statistics. Chapman and Hall, London UK (1987)

    MATH  Google Scholar 

  27. O’Hagan, A., Leonard, T.: Bayes estimation subject to uncertainty about parameter constraints. Biometrika 63, 201–202 (1976)

    Article  MathSciNet  Google Scholar 

  28. Rotnitzky, A., Cox, D.R., Bottai, M., Robins, J.: Likelihood-based inference with singular information matrix. Bernoulli 6, 243–284 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Salvan, A.: Test localmente più potenti tra gli invarianti per la verifica dell’ipotesi di normalità. In: Atti della XXXIII Riunione Scientifica delia Società Italiana di Statistica, volume II, pp. 173–179, Bari. Società Italiana di Statistica, Cacucci (1986)

    Google Scholar 

  30. Sharpies, J.J., Pezzey, J.C.V.: Expectations of linear functions with respect to truncated multinormal distributions-With applications for uncertainty analysis in environmental modelling. Environmental Modelling and Software 22, 915–923 (2007)

    Article  Google Scholar 

  31. Takemura, A., Matsui, M., Kuriki, S.: Skewness and kurtosis as locally best invariant tests of normality. Technical Report METR 06–47 (2006). Available at http://www.stat.t.u-tokyo.ac.jp/~takemura/papers/metr200647.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Loperfido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Franceschini, C., Loperfido, N. (2014). Testing for Normality When the Sampled Distribution Is Extended Skew-Normal. In: Corazza, M., Pizzi, C. (eds) Mathematical and Statistical Methods for Actuarial Sciences and Finance. Springer, Cham. https://doi.org/10.1007/978-3-319-02499-8_15

Download citation

Publish with us

Policies and ethics