Skip to main content

On the Strong Consistency of the Kernel Estimator of Extreme Conditional Quantiles

  • Conference paper
Functional Statistics and Applications

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

Nonparametric regression quantiles can be obtained by inverting a kernel estimator of the conditional distribution. The asymptotic properties of this estimator are well known in the case of ordinary quantiles of fixed order. The goal of this paper is to establish the strong consistency of the estimator in case of extreme conditional quantiles. In such a case, the probability of exceeding the quantile tends to zero as the sample size increases, and the extreme conditional quantile is thus located in the distribution tails.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdi, S., Abdi, A., Dabo-Niang, S., Diop, A.: Consistency of a nonparametric conditional quantile estimator for random fields. Math. Methods Stat. 19, 1–21 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beirlant, J., Goegebeur, Y.: Local polynomial maximum likelihood estimation for Pareto-type distributions. J. Multivar. Anal. 89, 97–118 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beirlant, J., Goegebeur, Y., Segers, J., Teugels J.: Statistics of Extremes: Theory and Applications. Wiley, New York (2004)

    Book  Google Scholar 

  4. Berlinet, A., Gannoun, A., Matzner-Lober, E.: Asymptotic normality of convergent estimates of conditional quantiles. Statistics 35, 139–169 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chavez-Demoulin, V., Davison, A.C.: Generalized additive modelling of sample extremes. J. R. Stat. Soc. Ser. C 54, 207–222 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chernozhukov, V.: Extremal quantile regression. Ann. Stat. 33, 806–839 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Daouia, A., Gardes, L., Girard, S., Lekina, A.: Kernel estimators of extreme level curves. Test 20, 311–333 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Daouia, A., Gardes, L., Girard, S.: On kernel smoothing for extremal quantile regression. Bernoulli 19, 2557–2589 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Davison, A.C., Ramesh, N.I.: Local likelihood smoothing of sample extremes. J. R. Stat. Soc. Ser. B 62, 191–208 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. R. Stat. Soc. Ser. B 52, 393–442 (1990)

    MATH  MathSciNet  Google Scholar 

  11. Dabo-Niang, S., Laksaci, A.: Nonparametric quantile regression estimation for functional dependent data. Commun. Stat. Theory Methods 41, 1254–1268 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Einmahl, U., Mason, D.M.: An empirical process approach to the uniform consistency of kernel type function estimators. J. Theor. Probab. 13, 1–37 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Einmahl, U., Mason, D.M.: Uniform in bandwidth consistency of kernel type function estimators. Ann. Stat. 33, 1380–1403 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ezzahrioui, M., Ould-Saïd, E.: Asymptotic results of a nonparametric conditional quantile estimator for functional time series. Commun. Stat. Theory Methods 37, 2735–2759 (2008)

    Article  MATH  Google Scholar 

  15. Gardes, L., Girard, S.: A moving window approach for nonparametric estimation of the conditional tail index. J. Multivar. Anal. 99, 2368–2388 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gardes, L., Girard, S.: Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels. Extremes 13, 177–204 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gardes, L., Girard, S.: Functional kernel estimators of large conditional quantiles. Electron. J. Stat. 6, 1715–1744 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gardes, L., Girard, S., Lekina, A.: Functional nonparametric estimation of conditional extreme quantiles. J. Multivar. Anal. 101, 419–433 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Girard, S., Jacob, P.: Frontier estimation via kernel regression on high power-transformed data. J. Multivar. Anal. 99, 403–420 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Girard, S., Menneteau, L.: Central limit theorems for smoothed extreme value estimates of Poisson point processes boundaries. J. Stat. Plan. Inference 135, 433–460 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hall, P., Tajvidi, N.: Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data. Stat. Sci. 15, 153–167 (2000)

    Article  MathSciNet  Google Scholar 

  22. Jurecková, J.: Remark on extreme regression quantile. Sankhya 69, 87–100 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Klass, M.: The Robbins-Siegmund series criterion for partial maxima. Ann. Probab. 13, 1369–1370 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Ergebnisse der Mathematik. Springer, New York (1991)

    Book  MATH  Google Scholar 

  25. Ould-Saïd, E., Yahia, D., Necir, A.: A strong uniform convergence rate of a kernel conditional quantile estimator under random left-truncation and dependent data. Electron. J. Stat. 3, 426–445 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Park, B.U.: On nonparametric estimation of data edges. J. Korean Stat. Soc. 30, 265–280 (2001)

    Google Scholar 

  27. Samanta, T.: Non-parametric estimation of conditional quantiles. Stat. Probab. Lett. 7, 407–412 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Smith, R.L.: Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone (with discussion). Stat. Sci. 4, 367–393 (1989)

    Article  MATH  Google Scholar 

  29. Stone, C.J.: Consistent nonparametric regression (with discussion). Ann. Stat. 5, 595–645 (1977)

    Article  MATH  Google Scholar 

  30. Stute, W.: Conditional empirical processes. Ann. Stat. 14, 638–647 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tsay, R.S.: Analysis of Financial Time Series. Wiley, New York (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Louhichi .

Editor information

Editors and Affiliations

Appendix: Proof of Auxiliary Results

Appendix: Proof of Auxiliary Results

Proof of Lemma 1

Clearly:

$$\displaystyle\begin{array}{rcl} \left \vert \frac{\bar{F}_{n}(y\vert x)} {\bar{F}(y\vert x)} - 1\right \vert \leq \left \vert \frac{\bar{F}_{n}(y\vert x)} {\bar{F}(y\vert x)} - \frac{\mathrm{I\!E}\left (\hat{\psi }_{n}(y,x)\right )} {\bar{F}(y\vert x)\mathrm{I\!E}\left (\hat{g}_{n}(x)\right )}\right \vert + \left \vert \frac{\mathrm{I\!E}\left (\hat{\psi }_{n}(y,x)\right )} {\bar{F}(y\vert x)\mathrm{I\!E}\left (\hat{g}_{n}(x)\right )} - 1\right \vert.& &{}\end{array}$$
(29)

We have,

$$\displaystyle\begin{array}{rcl} \mathrm{I\!E}\left (\hat{\psi }_{n}(y,x)\right )& =& \frac{1} {n}\sum _{i=1}^{n}\mathrm{I\!E}(K_{ h}(x - X_{i})\mathrm{i}_{Y _{i}>y}) = \mathrm{I\!E}(K_{h}(x - X_{1})\mathrm{i}_{Y _{1}>y}) {}\\ & =& \mathrm{I\!E}(K_{h}(x - X_{1})\mathrm{I\!P}(Y _{1}> y\vert X_{1})) =\int K_{h}(x - z)\mathrm{I\!P}(Y _{1}> y\vert X_{1} = z)g(z)dz {}\\ & =& \int K_{h}(x - z)\bar{F}(y\vert z)g(z)dz, {}\\ \end{array}$$

and \(\mathrm{I\!E}\left (\hat{g}_{n}(x)\right ) = \frac{1} {n}\sum _{i=1}^{n}\mathrm{I\!E}(K_{ h}(x - X_{i})) = \mathrm{I\!E}(K_{h}(x - X_{1}))\). Consequently,

$$\displaystyle\begin{array}{rcl} \frac{\mathrm{I\!E}\left (\hat{\psi }_{n}(y,x)\right )} {\bar{F}(y\vert x)\mathrm{I\!E}\left (\hat{g}_{n}(x)\right )} - 1& =& \frac{1} {\mathrm{I\!E}(K_{h}(x - X_{1}))}\left (\int K_{h}(x - z)\left [\frac{\bar{F}(y\vert z)} {\bar{F}(y\vert x)} - 1\right ]g(z)dz\right ) {}\\ & =& \frac{1} {\mathrm{I\!E}(K_{h}(x - X_{1}))}\left (\int K_{h}(u)\left [\frac{\bar{F}(y\vert x - u)} {\bar{F}(y\vert x)} - 1\right ]g(x - u)du\right ).{}\\ \end{array}$$

We conclude, since the kernel K is compactly supported, that for some R > 0,

$$\displaystyle{ \left \vert \frac{\mathrm{I\!E}\left (\hat{\psi }_{n}(y,x)\right )} {\bar{F}(y\vert x)\mathrm{I\!E}\left (\hat{g}_{n}(x)\right )} - 1\right \vert \leq \sup _{\{x',d(x,x')\leq hR\}}\left \vert \frac{\bar{F}(y\vert x')} {\bar{F}(y\vert x)} - 1\right \vert = A(y,y,x,h). }$$
(30)

Now,

$$\displaystyle\begin{array}{rcl} & & \left \vert \frac{\bar{F}_{n}(y\vert x)} {\bar{F}(y\vert x)} - \frac{\mathrm{I\!E}\left (\hat{\psi }_{n}(y,x)\right )} {\bar{F}(y\vert x)\mathrm{I\!E}\left (\hat{g}_{n}(x)\right )}\right \vert {}\\ & &\quad \leq \frac{\left \vert \hat{\psi }_{n}(y,x) -\mathrm{I\!E}\left (\hat{\psi }_{n}(y,x)\right )\right \vert } {\bar{F}(y\vert x)\hat{g}_{n}(x)} + \frac{\mathrm{I\!E}\left (\hat{\psi }_{n}(y,x)\right )\left \vert \hat{g}_{n}(x) -\mathrm{I\!E}\hat{g}_{n}(x)\right \vert } {\bar{F}(y\vert x)\hat{g}_{n}(x)\mathrm{I\!E}\hat{g}_{n}(x)} {}\\ & & \quad \leq \frac{\left \vert \hat{\psi }_{n}(y,x) -\mathrm{I\!E}\left (\hat{\psi }_{n}(y,x)\right )\right \vert } {\bar{F}(y\vert x)\hat{g}_{n}(x)} + (1 + A(y,y,x,h))\frac{\mathrm{I\!E}\left \vert \hat{g}_{n}(x) -\mathrm{I\!E}\hat{g}_{n}(x)\right \vert } {\hat{g}_{n}(x)}, {}\\ \end{array}$$

by (30). The last bound together with (30) and (29) prove Lemma 1. ■ 

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Girard, S., Louhichi, S. (2015). On the Strong Consistency of the Kernel Estimator of Extreme Conditional Quantiles. In: Ould Saïd, E., Ouassou, I., Rachdi, M. (eds) Functional Statistics and Applications. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-22476-3_4

Download citation

Publish with us

Policies and ethics