Skip to main content
Log in

Lipid oxidation in herring (Clupea harengus) light muscle, dark muscle, and skin, stored separately or as intact fillets

  • Published:
Journal of the American Oil Chemists' Society

Abstract

Light muscle, dark muscle, and skin from herring (Clupea harengus) were stored separately or as intact fillets at −18°C. After 0, 2, 8, 12, and 18 wk, all tissues were analyzed for conjugated dienes (A234) and lipid hydroperoxides. In tissues stored separately, total absorbance at 268 nm (A268) and lipid-soluble fluorescent oxidation products (FP) were also monitored. Further, prior to storage these tissues were subjected to measurement of total lipids, lipid classes, fatty acid pattern, α-tocopherol, iron, copper, selenium, and total aqueous pro-oxidative activity. When light muscle, dark muscle, and skin were stored as intact fillets, the following ranking order was seen for A234 and levels of lipid hydroperoxides at the end of the storage period: skin > dark muscle > light muscle. The corresponding ranking order for tissues stored separately was: dark muscle > skin > light muscle, whereas for A268 and FP the orders were: dark muscle > light muscle > skin and light muscle > dark muscle > skin, respectively. The compositional data obtained indicate the highest level of pro-oxidants in dark muscle and the highest level of polar lipids in light muscle. These observations reveal that pro-oxidants, to a greater extent than lipid composition, influence the increase in A234, hydroperoxides, and A268, whereas the reverse seems to be true for the increase in FP. The results also point to the strong influence from oxygen contact and tissue interactions on the progress of lipid oxidation in herring during storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hultin, H.O., Oxidation of Lipids in Seafoods, in Seafoods Chemistry, Processing Technology and Quality, edited by F. Shahidi and J.R. Botta, Blackie A&P, London, 1994, pp. 47–74.

    Google Scholar 

  2. Eriksson, C.E., Lipid Oxidation Catalysts and Inhibitors in Raw Materials and Processed Foods, Food Chem. 9:3–9 (1981).

    Article  Google Scholar 

  3. Vicetti, R., and J. Palma, Oxidation Susceptibility of Lipids in Whole Frozen Sardines Stored at −5°, Boletin de Investigacion Instituto Pesquero 2:45–56 (1984).

    Google Scholar 

  4. Ke, P.J., R.G. Ackman, B.A. Linke, and D.M. Nash, Differential Lipid Oxidation in Various Parts of Frozen Mackerel, J. Food Technol. 12:37–47 (1977).

    Article  CAS  Google Scholar 

  5. Toyomizu, M., and K. Hanoka, Lipid Oxidation of the Minced Ordinary Muscle of Fish During Storage at −5°C and Susceptibility to Lipid Oxidation, Bull. Jap. Soc. Sci. Fish 46:1007–1010 (1980).

    CAS  Google Scholar 

  6. Yamaguchi, K., T. Nakamura, and M. Toyomizu, Preferential Lipid Oxidation in the Skin of Round Fish. Ibid:5869–5874 (1984).

    Google Scholar 

  7. Hultin, H.O., Biochemical Deterioration of Fish Muscle, in Quality Assurance in the Fish Industry, edited by H.H. Huss, M. Jakobsen, and J. Liston, Elsevier, Amsterdam, 1992, pp. 125–138.

    Google Scholar 

  8. German, J.B., and J.E. Kinsella, Lipid Oxidation in Fish Tissue. Enzymatic Initiation via Lipoxygenase, J. Agric. Food Chem. 33:680–683 (1985).

    Article  CAS  Google Scholar 

  9. Slabyj, B.M., and H.O. Hultin, Lipid Peroxidation by Microsomal Fractions Isolated from Light and Dark Muscle of Herring (Clupea harengus), J. Food Sci. 47:1395–1398 (1982).

    Article  CAS  Google Scholar 

  10. Slabyj, B.M., and H.O. Hultin, Microsomal Lipid Peroxidation Systems from Herring Light and Dark Muscle: Effect of Cytosolic Fractions, J. Food Biochem. 7:107–114 (1983).

    Article  Google Scholar 

  11. Petillo, D., and H.O. Hultin, Antioxidant Loss in Atlantic Mackerel (Scomber scombrus) Light and Dark Muscle, in Institute of Food Technologists Annual Meeting, 1995, p. 180.

  12. Jia, T-D., S.D. Kelleher, H.O. Hultin, D. Petillo, R. Maney, and J. Krzynowek, Comparison of Quality Loss and Changes in the Glutathioneperoxidase Antioxidant System in Stored Mackerel and Bluefish Muscle, J. Agric. Food Chem. 44:1195–1201 (1996).

    Article  CAS  Google Scholar 

  13. Erickson, M.C., Compositional Parameters and Their Relationship to Oxidative Stability of Channel Catfish, Ibid.:1213–1218 (1993).

    Article  CAS  Google Scholar 

  14. Hultin, H.O., Lipid Oxidation in Fish Muscle, in Advances In Seafood Biochemistry, edited by G.J. Flick, and R.E. Martin, Technomic, Lancaster, 1992, pp. 99–122.

    Google Scholar 

  15. Tichivangana, J.Z., and P.A. Morrisey, Lipid Oxidation in Cooked Fish Muscle, Ir. J. Food Sci. Technol. 6:157–163 (1982).

    CAS  Google Scholar 

  16. Mai, J., and J.E. Kinsella, Lipid Composition of Dark and White Muscle from White Sucker (Catostomus commersoni), J. Food Sci. 44:1101–1109 (1979).

    Article  CAS  Google Scholar 

  17. Ke, P.J., and R.G. Ackman, Metal-Catalyzed Oxidation in Mackerel Skin and Meat Lipids, J. Am. Oil Chem. Soc. 53:636–640 (1976).

    Article  CAS  Google Scholar 

  18. Mohri, S., S.-Y. Cho, Y. Endo, and K. Fujimoto, Lipoxygenase Activity in Sardine Skin, Agric. Biol. Chem. 54:1889–1891 (1990).

    CAS  Google Scholar 

  19. Undeland, I., M. Stading, and H. Lingnert, Influence of Skinning on Lipid Oxidation in Different Horizontal Layers of Herring (Clupea harengus) During Frozen Storage, J. Sci. Food Agr., in press.

  20. Ingemansson, T., P. Kaufmann, and A. Pettersson, Lipid Hydrolysis and Oxidation Related to Astaxanthin Content in Light and Dark Muscle of Frozen Stored Rainbow Trout (Oncorhynchus mykiss), J. Food Sci. 58:513–518 (1993).

    Article  CAS  Google Scholar 

  21. Isaak, R.A., and W.C. Johnsson, Collaborative Study of Wet and Dry Ashing Techniques for the Elemental Analysis of Plant Tissue by Atomic Absorption Spectrophotometry, J. Assoc. Off. Anal. Chem. 58:436–440 (1975).

    Google Scholar 

  22. Standard Conditions for Iron, in Perkin-Elmer Cookbook, Vol. 2, Perkin-Elmer, Norwalk, 1976.

    Google Scholar 

  23. The THGA Graphite Furnace: Techniques and Recommended Conditions, Perkin-Elmer Publication B3210, Bodenseewerk Perkin-Elmer GmbH, Ueberlingen, Germany, 1992, 16 pp.

    Google Scholar 

  24. Flow Injection Hydride Analyses: Recommended Analytical Conditions and General Information, Perkin-Elmer Publication B3505, Bodenseewerk Perkin-Elmer GmbH, Ueberlingen, Germany, 1994, pp. 22–23.

    Google Scholar 

  25. Axelrod, B., T.M. Cheesbrough, and S. Laakso, in Methods in Enzymology, edited by J.M. Lowenstein, Academic Press, London, 1981, vol. 71, pp. 441–451.

    Google Scholar 

  26. Rutgersson, A., E.-L. Bergman, H. Lingnert, and A.-S. Sandberg, Optimization of Temperature, Time and Lactic Acid Concentration to Inactivate Lipoxygenase and Lipase and Preserve Phytase Activity in Barley (cv. Blenheim) During Soaking, Cereal Chem. 74:727–732 (1997).

    CAS  Google Scholar 

  27. Bligh, E.G., and W.J. Dyer, A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37:911–917 (1959).

    PubMed  CAS  Google Scholar 

  28. Ekstrand, B., I. Gangby, G. Åkesson, U. Stöllman, H. Lingnert, and S. Dahl, Lipase Activity and Development of Rancidity in Oats and Oat Products Related to Heat Treatment During Processing, J. Cereal Sci. 17:247–254 (1993).

    Article  CAS  Google Scholar 

  29. Burton, G.W., A. Webb, and K.U. Ingold, A Mild, Rapid, Efficient Method of Lipid Extraction for Use in Determining Vitamin E/Lipid Ratios, Lipids 20:29–39 (1985).

    Article  PubMed  CAS  Google Scholar 

  30. Undeland, I., M. Härröd, and H. Lingnert, Comparison Between Methods Using Low Toxicity Solvents for the Extraction of Lipids from Herring (Clupea harengus), Food Chem. 61:355–365 (1998).

    Article  CAS  Google Scholar 

  31. Kaluzny, M.A., L.A. Duncan, M.V. Merrit, and D.E. Epps, Rapid Separation of Lipid Classes in High Yield and Purity Using Bonded Phase Columns, J. Lipid Res. 26:135–140 (1985).

    PubMed  CAS  Google Scholar 

  32. Piironen, V., P. Naro, E-L. Syväoja, K. Salminen, and P. Koivistoinen, High-Performance Liquid Chromatographic Determination of Tocopherols and Tocotrienols and Its Application to Diets and Plasma of Finnish Men, Int. Vit. Nutr. Res. 53:35–40 (1983).

    Google Scholar 

  33. Miyazawa, T., R. Saeki, and H. Inaba, Detection of Chemiluminescence in Lipid Peroxidation of Biological Systems and Its Application to HPLC, J. Biolumin. Chemilumin. 4:475–478 (1989).

    Article  PubMed  CAS  Google Scholar 

  34. Yamamoto, Y., and B.N. Ames, Detection of Lipid Hydroperoxides and Hydrogen Peroxide at Picomole Levels by an HPLC and Isoluminol Chemiluminescence Assay, Free Radical Biol. Med. 3:359–361 (1987).

    CAS  Google Scholar 

  35. Ruzicka, J., and E.H. Hanssen, Principles, in Flow Injection Analysis, edited by P.J. Elvin and J.D. Winefordner, John Wiley & Sons, 1981, pp. 6–29.

  36. Undeland, I., and H. Lingnert, Measurement of Oxidative Changes in Fatty Fish Using UV- and Chemiluminescence Detection, Proceedings from the 18th Nordic Lipid Symposium, Reykjavik, Iceland, edited by G.G. Haraldsson, S. Gudbjarnason, and G. Lambertsen, 1995, pp. 139–143.

  37. Miyazawa, T., T. Suzuki, K. Fujimoto, and K. Yasuda, Chemiluminescent Simultaneous Determination of Phosphatidylcholine Hydroperoxide and Phosphatidylethanolamine Hydroperoxide in the Liver and Brain of the Rat, J. Lipid Res. 33:1051–1059 (1992).

    PubMed  CAS  Google Scholar 

  38. Anhydrous Milk Fat: Determination of Peroxide Value, Int. IDF Standard 74A, International Dairy Federation, Brussels, Belgium (1991).

    Google Scholar 

  39. Ueda, S., T. Hayashi, and M. Nakimi, Effect of Ascorbic Acid on Lipid Autoxidation in a Model Food System, Agric. Biol. Chem. 50:1–7 (1986).

    CAS  Google Scholar 

  40. Paquot, C., Evidence of Purity and Determination from Ultraviolet Spectrophotometry, IUPAC Standard Method II.D.23, in Standard Methods for the Analysis of Oils, Fats and Derivatives, 6th edn., A. Wheaton & Co. Ltd., Exeter, Great Britain, 1979.

    Google Scholar 

  41. Brown, H.G., and H.E. Snyder, Conjugated Dienes of Crude Soy Oil: Detection by UV Spectrophotometry and Separation by HPLC, J. Am. Oil Chem. Soc. 59:280–283 (1982).

    CAS  Google Scholar 

  42. Parr, L.J., and P.A.T. Swoboda, The Assay of Conjugable Oxidation Products Applied to Lipid Deterioration in Stored Foods, J. Food Technol. 11:12 (1976).

    Article  Google Scholar 

  43. Dillard, C.J., and A.L. Tappel, Fluorescent Products from Reaction of Peroxidizing Polyunsaturated Fatty Acids with Phosphatidyl Ethanolamine and Phenylalanine, Lipids 8:183–189 (1973).

    Article  PubMed  CAS  Google Scholar 

  44. Love, R.M., Chemistry and Anatomy, in The Chemical Biology of Fishes, Academic Press, London, 1970, pp. 1–35.

    Google Scholar 

  45. Love, R.M., The Physical Structure of Fish Muscle and Its Chemistry, in The Food Fishes, Farrand Press, London, 1988, pp. 3–23.

    Google Scholar 

  46. Decker, E.A., and H.O. Hultin, Factors Influencing Catalysis of Lipid Oxidation by the Soluble Fraction of Mackerel Muscle, J. Food Sci. 55:947–950 (1990).

    Article  CAS  Google Scholar 

  47. Decker, E.A., C-H. Huang, J.E. Osinchak, and H.O. Hultin, Iron and Copper: Role in Enzymic Lipid Oxidation of Fish Sarcoplasmic Reticulum at in situ Concentrations, J. Food Biochem. 13:179–186 (1989).

    Article  CAS  Google Scholar 

  48. Flohé, L., Glutathione Peroxidase Brought into Focus, in Free Radicals in Biology, edited by W.E.M. Pryor, Academic Press, New York, 1982, pp. 223–253.

    Google Scholar 

  49. Kadiiska, M.B., P.M. Hanna, S.J. Jordan, and R.P. Mason, Electron Spin Resonance Evidence for Free Radical Generation in Copper-Treated Vitamin E- and Selenium-Deficient Rats: In Vivo Spin Trapping Investigation, Molecular Pharmacol. 44:222–227 (1993).

    CAS  Google Scholar 

  50. Nakano, T., M. Sato, and M. Takeuchi, Glutathione Peroxidase of Fish, J. Food Sci. 57:1116–1119 (1992).

    Article  CAS  Google Scholar 

  51. Watanabe, F., M. Goto, K. Abe, and Y. Nakano, Glutathione Peroxidase Activity During Storage of Fish Muscle, Ibid.:734–735 (1996).

    Article  CAS  Google Scholar 

  52. Stadtman, T.C., Biosynthesis and Function of Selenocysteine-Containing Enzymes, J. Biol. Chem. 266:16257–16260 (1991).

    PubMed  CAS  Google Scholar 

  53. Nagayama, F., S. Imano, and Y. Naito, Effect of Temperature on Lipid Oxidation Catalyzed by Mackerel Tissue, Bull. Jpn. Soc. Sci. Fish 32:415–418 (1971).

    Google Scholar 

  54. Cho, S-Y., Y. Endo, K. Fujimoto, and T. Kaneda, Autoxidation of Ethyl Eicosapentaenoate in a Defatted Fish Dry Model System, Nippon Suisan Gakkaishi 53:545–552 (1989).

    Google Scholar 

  55. Fujimoto, K., S. Mohri, K. Hasegawa, and Y. Endo, Oxidative Deterioration of Fish Meat, Food Rev. Int. 6:603–616 (1990).

    Article  CAS  Google Scholar 

  56. Eriksson, C.E., P.A. Olsson, and S.G. Svensson, Denaturated Hemoproteins as Catalysts in Lipid Oxidation, J. Am. Oil Chem. Soc. 48:442–447 (1971).

    Article  PubMed  CAS  Google Scholar 

  57. Eriksson, C.E., P.A. Olsson, and S.G. Svensson, Oxidation of Fatty Acids by Heat Treated Hemoproteins, Lipids 5:365–366 (1970).

    Article  PubMed  CAS  Google Scholar 

  58. Bohdan, M., M.B. Slabyj, and H.O. Hultin, Lipid Peroxidation by Microsomal Fractions Isolated from Light and Dark Muscles of Herring (Clupea harengus), J. Food Sci. 47:1395–1398 (1982).

    Article  Google Scholar 

  59. Undeland, I., B. Ekstrand, and H. Lingnert, Lipid Oxidation in Minced Herring (Clupea harengus) During Frozen Storage. Effect of Washing and Precooking, J. Agric. Food Chem., in press.

  60. Wang, Y-J., L.A. Miller, and P.B. Addis, Effect of Heat Inactivation of Lipoxygenase on Lipid Oxidation in Lake Herring (Coregonus artredii), J. Am. Oil Chem. Soc. 68:752–757 (1991).

    CAS  Google Scholar 

  61. Hägg, M., and J. Kumpulainen, E-Vitaminhalten hos Fisk, Poster No D3, Livsmedelsdagarna, October 26–27th, SIK-The Swedish Institute for Food and Biotechnology, Göteborg, Sweden (1994).

    Google Scholar 

  62. Situnayake, R.D., B.J. Crump, A.V. Zezulka, M. Davis, B. McConkey, and D.I. Thurnham, Measurement of Conjugated Diene Lipids by Derivative Spectroscopy in Heptane Extracts of Plasma, Ann. Clin. Biochem. 27:258–266 (1990).

    PubMed  CAS  Google Scholar 

  63. Mizushima, Y., K. Takama, and K. Zama, Effect of Copper, Iron, and Hemin on Lipid Oxidation in Fish Flesh Homogenate, Bull. Fac. Fish Hokkaido Univ. 28:207–211 (1977).

    CAS  Google Scholar 

  64. Harris, P., and J. Tall, in Rancidity in Foods, edited by J.C. Allen and R.J. Hamilton, Blackie A&P, London, 1989, pp. 256–273.

    Google Scholar 

  65. Gutteridge, M.C., R. Richmond, and B. Halliwell, Inhibition of the Iron-Catalysed Formation of Hydroxyl Radicals from Superoxide and of Lipid Peroxidation by Desferrioxamine, Biochem. J. 184:469–472 (1979).

    PubMed  CAS  Google Scholar 

  66. Kanner, J., and S. Harel, Initiation of Lipid Peroxidation by Activated Metmyoglobin and Methemoglobin, Arch. Biochem. Biophys. 237:314–321 (1985).

    Article  PubMed  CAS  Google Scholar 

  67. Hultin, H.O., Potential Lipid Oxidation Problems in Fatty Fish Processing, in Fatty Fish Utilization: Upgrading from Feed to Food, edited by N. Davis, University of North Carolina Sea Grant College Program, Raleigh, 1988, pp. 185–223.

    Google Scholar 

  68. Beckman, J.K., S.M. Borowitz, H.L. Green, and I.M. Burr, Promotion of Iron-Induced Rat Liver Microsomal Lipid Peroxidation by Copper, Lipids 23:559–563 (1988).

    Article  PubMed  CAS  Google Scholar 

  69. Kanner, J., I. Shegalovich, S. Harel, and B. Hazan, Muscle Lipid Peroxidation Dependent on Oxygen and Free Metal Ions, J. Agric. Food Chem. 36:409–412 (1988).

    Article  CAS  Google Scholar 

  70. Gray, J.I., Measurement of Lipid Oxidation: A Review, J. Am. Oil Chem. Soc. 55:539–546 (1978).

    CAS  Google Scholar 

  71. Fletcher, B.L., C.J. Dillard, and L. Tappel, Measurement of Fluorescent Lipid Peroxidation Products in Biological Systems and Tissues, Anal. Biochem. 52:1–9 (1973).

    Article  PubMed  CAS  Google Scholar 

  72. Pokorny, J., B.A. El-Zeany, and G. Janicek, Browning Reactions of Oxidized Fish Lipids with Proteins, IV Int. Congress Food Sci. Technol. 1:217–223 (1974).

    Google Scholar 

  73. Hasegawa, K., Y. Endo, and K. Fujimoto, Oxidative Deterioration in Dried Fish Model Systems Assessed by Solid Sample Fluorescence Spectrophotometry, J. Food Sci. 57:1123–1126 (1992).

    Article  CAS  Google Scholar 

  74. Gardner, C.W., Reactions of Hydroperoxides—Products of High Molecular Weight, in Autoxidation of Unsaturated Lipids, edited by H.W.S. Chan, Academic Press, London, 1987, pp. 51–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irgrid Undeland.

About this article

Cite this article

Undeland, I., Ekstrand, B. & Lingnert, H. Lipid oxidation in herring (Clupea harengus) light muscle, dark muscle, and skin, stored separately or as intact fillets. J Amer Oil Chem Soc 75, 581–590 (1998). https://doi.org/10.1007/s11746-998-0069-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-998-0069-9

Key words

Navigation