Skip to main content
Log in

Promotion of iron-induced rat liver microsomal lipid peroxidation by copper

  • Published:
Lipids

Abstract

Although copper has been demonstrated to promote lipid peroxidation in a number of systems, the mechanisms involved have not been fully defined. In this study, the role of copper in modifying lipid peroxidation has been explored in rat hepatic microsomes. In an in vitro system containing reduced glutathione (GSH, 200 μM) and Tris buffer, pH 7,4, cupric sulfate (1–50 μM) potentiated lipid peroxidation induced by ferrous sulfate (10 μM) but was unable to elicit peroxidation in the absence of iron. Higher levels of cupric sulfate (100 μM or greater) were inhibitory. The nature as well as the extent of the peroxidative response of microsomes to cupric sulfate were dependent on glutathione levels in addition to those of iron. Cupric sulfate (100 μM) strongly potentiated ferrous ion-induced lipid peroxidation in the presence of 400–800 μM GSH, while it inhibited peroxidation at lower levels of GSH (0–200 μM) and did not affect ferrous ion-induced peroxidation with glutathione levels of 3–10 mM.

The potentiating effect of copper on ferrous ion-induced lipid peroxidation was further explored by investigating: (1) potential GSH-mediated reduction of cupric ions; (2) potential copper/GSH-mediated reduction of ferric ions (formed by oxidation during incubation); and (3) possible promotion of propagation reactions by copper/GSH. Our results indicate that cupric ions are reduced by GSH and thus are converted from an inhibitor to an enhancer of iron-induced lipid peroxidation. Cuprous ions appear to potentiate lipid peroxidation by reduction of ferric ions, rather than by promoting propagation reactions. Iron (in a specific Fe+2/Fe+3 ratio) is then an effective promoter of initiation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADP:

adenosine 5′-diphosphate

GSH:

reduced glutathione

SOD:

superoxide dismutase

TBA:

2-thiobarbituric acid

References

  1. Svingen, B.A., O’Neal, F.O., and Aust, S.D. (1978)Photochem. Photobiol. 28, 803–810.

    PubMed  CAS  Google Scholar 

  2. Svingen, B.A., Buege, J.A., O’Neal, F.O., and Aust, S.D. (1979)J. Biol. Chem. 254, 5892–5899.

    PubMed  CAS  Google Scholar 

  3. Hochstein, P., Kumar, S., and Forman, S.J. (1980)Ann. N.Y. Acad. Sci. 355, 240–246.

    PubMed  CAS  Google Scholar 

  4. Ding, A.H., and Chan, P.C. (1984)Lipids 19, 278–284.

    Article  PubMed  CAS  Google Scholar 

  5. Wittig, M., and Steffen, C. (1984)Res. Commun. Chem. Pathol. Pharmacol. 44, 477–492.

    PubMed  CAS  Google Scholar 

  6. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–285.

    PubMed  CAS  Google Scholar 

  7. Eskola, J., and Laakso, S. (1983)Biochim. Biophys. Acta 751, 305–311.

    CAS  Google Scholar 

  8. Hamberg, M., and Samuelsson, B. (1967)J. Biol. Chem. 242, 5344–5354.

    PubMed  CAS  Google Scholar 

  9. Mihara, M., Uchiyama, M., and Fukuzawa, K. (1980)Biochem. Med. 23, 302–311.

    Article  PubMed  CAS  Google Scholar 

  10. Yagi, K. (1984) inMethods of Enzymology (Packer, L., ed.) Vol. 105, pp. 328–331, Academic Press, New York.

    Google Scholar 

  11. Kumar, K.S., Rowse, C., and Hochstein, H. (1978)Biochem. Biophys. Res. Commun. 83, 587–592.

    Article  PubMed  CAS  Google Scholar 

  12. Tien, M., Morehouse, L.A., Bucher, J.R., and Aust, S.D. (1982)Arch. Biochem. Biophys. 218, 450–458.

    Article  PubMed  CAS  Google Scholar 

  13. Pederson, T.C., Buege, J.A., and Aust, S.D. (1973)J. Biol. Chem. 248, 7134–7141.

    PubMed  CAS  Google Scholar 

  14. Tien, M., Bucher, J.R., and Aust, S.D. (1982)Biochem. Biophys. Res. Commun. 107, 279–285.

    Article  PubMed  CAS  Google Scholar 

  15. Braughler, J.M., Duncan, L.A., and Chase, R.L. (1986)J. Biol. Chem. 261, 10282–10289.

    PubMed  CAS  Google Scholar 

  16. Bucher, J.R., Tien, M., and Aust, S.D. (1983)Biochem. Biophys. Res. Commun. 111, 777–784.

    Article  PubMed  CAS  Google Scholar 

  17. Minotti, G., and Aust, S.D. (1986)J. Biol. Chem. 262, 1098–1104.

    Google Scholar 

  18. Hill, K.E., and Burk, R.F. (1984)Biochem. Pharmacol. 33, 1065–1068.

    Article  PubMed  CAS  Google Scholar 

  19. Ursini, F., Maiorino, M., Valente, M., Ferri, L., and Gregolin, C. (1982)Biochim. Biophys. Acta 710, 197–211.

    PubMed  CAS  Google Scholar 

  20. Gibson, D.D., Hornbrook, K.R., and McCay, P.B. (1980)Biochim. Biophys. Acta 620, 572–582.

    PubMed  CAS  Google Scholar 

  21. Tan, K.H., Meyer, D.J., Belin, J., and Ketterer, B. (1984)Biochem. J. 220, 243–252.

    PubMed  CAS  Google Scholar 

  22. Gutteridge, J.M., and Wilkins, S. (1983)Biochim. Biophys. Acta 759, 38–41.

    PubMed  CAS  Google Scholar 

  23. Gutteridge, J.M.C., Hill, C., and Blake, D.R. (1984)Clini. Chimica. Acta 139, 85–90.

    Article  CAS  Google Scholar 

  24. Steveninck, J.V., Van der Zee, J., and Dubbelman, T.M.AR. (1985)Biochem. J. 232, 309–311.

    PubMed  Google Scholar 

  25. Gutteridge, J.M.C. (1982)FEBS. Lett. 150, 454–462.

    Article  PubMed  CAS  Google Scholar 

  26. McPhail, D.B., and Goodman, B.A. (1984)Biochem. J. 221, 559–560.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Beckman, J.K., Borowitz, S.M., Greene, H.L. et al. Promotion of iron-induced rat liver microsomal lipid peroxidation by copper. Lipids 23, 559–563 (1988). https://doi.org/10.1007/BF02535597

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535597

Keywords

Navigation