Skip to main content
Log in

Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth

  • Published:
Journal of the American Oil Chemists' Society

Abstract

Twenty microalgal strains were investigated in photoautotrophic flask cultures for their potential for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) production. The highest EPA proportion (% of total fatty acids) was produced by Monodus subterraneus UTEX 151 (34.2%), followed by Chlorella minutissima UTEX 2341 (31.3%) and Phaeodactylum tricornutum UTEX 642 (21.4%). The highest DHA proportion (% of total fatty acids) was obtained in Crypthecodinium cohnii UTEX L1649 (19.9%), followed by Amphidinium carterae UTEX LB 1002 (17.0%) and Thraustochytrium aureum ATCC 28211 (16.1%). Among the 20 strains screened, the EPA yield was high in M. subterraneus UTEX 151 (96.3 mg/L), P. tricornutum UTEX 642 (43.4 mg/L), Chl. minutissima UTEX 2341 (36.7 mg/L), and Por. cruentum UTEX 161 (17.9 mg/L) owing to their relatively high biomass concentrations. The DHA yield was high in C. cohnii UTEX L1649 (19.5 mg/L) and A. carterae UTEX LB 1002 (8.6 mg/L). Heterotrophic growth of these 20 microalgae was also tested on two different carbon sources, acetate and glucose. All microalgae except Nannochloropsis oculata UTEX LB 2164 showed growth on glucose (5 g/L) under heterotrophic conditions. Twelve of them could grow heterotrophically when acetate (1 g/L) was used as their sole carbon and energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drevon, C.A., I. Baksaas, and H.E. Krokan (eds.), Omega-3 Fatty Acids: Metabolism and Biological Effects, Birkhauser Verlag, Basel, Switzerland, 1993.

    Google Scholar 

  2. Simopoulos, A.P., R.R. Kifer, R.E. Martin, and S.M. Barlaw (eds.), Health Effects of θ-3 Polyunsaturated Fatty Acids, S. Karger AG, Basel, Switzerland, 1991.

    Google Scholar 

  3. Nettleton, A.J. (ed.), Omega-3 Fatty Acids and Health, Chapman and Hall, New York, 1995.

    Google Scholar 

  4. Galli, C., and A.P. Simopoulos (eds.), Dietary θ3 and θ6 Fatty Acids: Biological Effects and Nutritional Essentiality, Plenum Press, New York, 1989.

    Google Scholar 

  5. Yongmanitchai, W., and O.P. Ward, Omega-3 Fatty Acids: Alternative Sources of Production, Process Biochem. 24:117–125 (1989).

    CAS  Google Scholar 

  6. Barclay, W.R., K.M. Meager, and J.R. Abril, Heterotrophic Production of Long-Chain Omega-3 Fatty Acids Utilizing Algae and Algae-Like Microorganisms, J. Appl. Phycol. 6:123–129 (1994).

    Article  CAS  Google Scholar 

  7. Radmer, R.J., and T.C. Fisher, Large Scale Production of Docosahexaenoic Acid (DHA), in Proceedings of Seventh International Conference, Opportunities from Micro- and Macro-algae, International Association of Applied Algology, Knysna, South Africa, 1996, p. 60.

    Google Scholar 

  8. Chen, F., High Cell Density Culture of Microalgae in Heterotrophic Growth, Trends Biotechnol. 14:421–426 (1996).

    Article  CAS  Google Scholar 

  9. Starr, R.C., and J.A. Zeikus, The Culture Collection of Algae at the University of Texas at Austin, J. Phycol. (Suppl.) 29:90–95 (1993).

    Google Scholar 

  10. Nerad, T.A., American Type Culture Collection, Catalogue of Protists, 18th edn., Rockville, 1993, pp. 66–75.

  11. Chen, F., and M.R. Johns, Effect of C/N Ratio and Aeration on the Fatty Acid Composition of Heterotrophic Chlorella sorokiniana, J. Appl. Phycol. 3:203–209 (1991).

    Article  CAS  ADS  Google Scholar 

  12. Bligh, E.G., and W.J. Dyer, A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37:911–917 (1959).

    PubMed  CAS  Google Scholar 

  13. Christie, W.W., Gas Chromatography and Lipids, A Practical Guide, The Oily Press, Ayr, 1992, pp. 29–70.

    Google Scholar 

  14. Cohen, Z., Production Potential of Eicosapentaenoic Acid by Monodus subterraneus, J. Am. Oil. Chem. Soc. 71:941–945 (1994).

    Article  CAS  Google Scholar 

  15. Iwamoto, H., and S. Sato, Production of EPA by Freshwater Unicellular Algae, Ibid.:434 (1986).

    Google Scholar 

  16. Bajpai, P.K., P. Bajpai, and O.P. Ward, Optimization of Production of Docosahexaenoic Acid by Thraustochytrium aureum ATCC 34304, Ibid.:509–513 (1991).

    CAS  Google Scholar 

  17. Yongmanitchai, W., and O.P. Ward, Screening of Algae for Potential Alternative Sources of Eicosapentaenoic Acid, Phytochemistry 30:2963–2967 (1991).

    Article  CAS  Google Scholar 

  18. Stinson, E.E., R. Kwoczak, and M.J. Kurantz, Effect of Cultural Conditions on Production of Eicosapentaenoic Acid by Pythium irregulare, J. Ind. Microbiol. 8:171–178 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. Cohen, Z., A. Vonshak, and A. Richmond, Effect of Environmental Conditions on Fatty Acid Composition of the Red Alga Porphyridium cruentum: Correlation to Growth Rate, J. Phycol. 24:328–332 (1988).

    CAS  Google Scholar 

  20. Cohen, Z., The Production Potential of Eicosapentaenoic and Arachidonic Acids by the Red Alga Porphyridium cruentum, J. Am. Oil Chem. Soc. 67:916–920 (1990).

    Article  CAS  Google Scholar 

  21. Cohen, Z., and S. Cohen, Preparation of Eicosapentaenoic Acid Concentrate from Porphyridium cruentum, Ibid.:16–19 (1991).

    CAS  Google Scholar 

  22. Goldman, J.C., Biomass Production in Mass Cultures of Marine Phytoplankton at Varying Temperatures, J. Exp. Mar. Biol. Ecol. 27:161–169 (1977).

    Article  Google Scholar 

  23. Thompson, P.A., M.X. Guo, P.J. Harrison, and J.N.C. Whyte, Effects of Variation in Temperature. II. On the Fatty Acid Composition of Eight Species of Marine Phytoplankton, J. Phycol. 28:488–497 (1992).

    Article  CAS  Google Scholar 

  24. Dunstan, G.A., J.K. Volkman, S.M. Barrett, and C.D. Garland, Changes in Lipid Composition and Maximisation of the Polyunsaturated Fatty Acid Content of Three Microalgae Grown in Mass Culture, J. Appl. Phycol. 5:71–83 (1993).

    Article  CAS  Google Scholar 

  25. Seto, A., H.L Wang, and C.W. Hesseltine, Culture Conditions Affect Eicosapentaenoic Acid Content of Chlorella minutissima, J. Am. Oil Chem. Soc. 61:892–894 (1984).

    Article  CAS  Google Scholar 

  26. Chen, F., and M.R. Johns, Substrate Inhibition of Chlamydomonas reinhardtii by Acetate in Heterotrophic Culture, Process Biochem. 29:245–252 (1994).

    Article  CAS  Google Scholar 

  27. Chen, F., and M.R. Johns, High Cell Density Culture of Chlamydomonas reinhardtii on Acetate Using Fed-Batch and Hollow-Fibre Cell-Recycle Systems, Biores. Technol. 55:103–110 (1996).

    Article  CAS  Google Scholar 

  28. Day, J.D., A.P. Edwards, and G.A. Rodgers, Development of an Industrial-Scale Process for the Heterotrophic Production of a Micro-Algal Mollusc Feed, Ibid.:245–249 (1991).

    Article  Google Scholar 

  29. Tan, C.K., and M.R. Johns, Screening of Diatoms for Heterotrophic Eicosapentaenoic Acid Production, J. Appl. Phycol. 8:59–64 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen.

About this article

Cite this article

Vazhappilly, R., Chen, F. Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J Amer Oil Chem Soc 75, 393–397 (1998). https://doi.org/10.1007/s11746-998-0057-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-998-0057-0

Key Words

Navigation