Skip to main content
Log in

Effects of various hydrocarbons on micellar growth

  • Published:
Journal of the American Oil Chemists' Society

Abstract

The effect of aliphatic and aromatic hydrocarbons on surfactant micellar growth has been investigated by viscosity measurements at 40°C. Aqueous and aqueous KBr (0.1 M) solutions of 0.1 M cetylpyridinium bromide (CPB) showed that the viscosity behavior changed substantially in the presence of KBr. This is attributed to favorable conditions produced by KBr that assist micellar growth by addition of hydrocarbons. Reasons for the effectiveness of the solubilized hydrocarbons are suggested and supported by theoretical arguments. The causes of viscosity decrease at higher aromatic hydrocarbon concentrations are also explained. Micellar growth with soluble aromatic/aliphatic hydrocarbons could also be initiated if a moderate salt concentration is present in CPB micellar solutions. The chainlength, solubilization site, and molar volume of the soluble hydrocarbons all affect the bulk viscosity of the solution. Such surfactant and hydrocarbon combinations may find use in micellar-enhanced ultrafiltration of benzene and its derivatives, but it should be kept in mind that micellar shape may change and be more curved at higher benzene derivative concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao, U.R.K., C. Manohar, B.S. Valaulikar, and R.M. Iyer, On the Origin of Viscoelasticity in Micellar Solutions of Cetyltrimethylammonium Bromide and Sodium Salicylate, Ibid.:3286–3292 (1987).

    Article  CAS  Google Scholar 

  2. Stigter, D., On Density, Hydration, Shape, and Charge of Micelles of Sodium Dodecyl Sulfate and Dodecylammonium Chloride, J. Colloid Interface Sci. 23:379–388 (1967).

    Article  CAS  Google Scholar 

  3. Lindemuth, P.M., and G.L. Bertrand, Calorimetric Observations of the Transition of Spherical to Rodlike Micelles with Solubilized Organic Additives, J. Phys. Chem. 97:7769–7773 (1993).

    Article  CAS  Google Scholar 

  4. Kumar, S., V.K. Aswal, H.N. Singh, P.S. Goyal, and Kabir-ud-Din, Growth of Sodium Dodecyl Sulfate Micelles in the Presence of n-Octylamine, Langmuir 10:4069–4072 (1994).

    Article  CAS  Google Scholar 

  5. Israelachvili, J.N., D.J. Mitchell, and B.W. Ninham, Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers, J. Chem. Soc., Faraday Trans. 2 72:1525–1568 (1976).

    Article  Google Scholar 

  6. Bohmer, M.R., L.K. Koopal, and J. Lyklema, Micellization of Ionic Surfactants. Calculations Based on a Self-Consistent Field Lattice Model, J. Phys. Chem. 95:9569–9578 (1991).

    Article  CAS  Google Scholar 

  7. Mitchell, D.J., and B.W. Ninham, Micelles, Vesicles and Microemulsions, J. Chem. Soc., Faraday Trans. 2 77:601–629 (1980).

    Article  Google Scholar 

  8. Tanford, C., Micelle Shape and Size, J. Phys. Chem. 76:3020–3024 (1972).

    Article  CAS  Google Scholar 

  9. Fang, J., Article II: Ph.D. Dissertation, University of Missouri-Rolla, 1987.

  10. Ozeki, S., and S. Ikeda, The Sphere-Rod Transition of Micelles and the Two Step Micellization of Dodecyltrimethylammonium Bromide in Aqueous NaBr Solutions, J. Colloid Interface Sci. 87:424–435 (1982).

    Article  CAS  Google Scholar 

  11. Khatory, A., F. Kern, F. Lequeux, J. Appell, G. Porte, N. Morie, A. Ott, and W. Urbach, Entangled Versus Multiconnected Network of Wormlike Micelles, Langmuir 9:933–939 (1993).

    Article  CAS  Google Scholar 

  12. Kumar, S., Kirti, K. Kumari, and Kabir-ud-Din, Role of Alkanols in Micellar Growth: A Viscometric Study, J. Am. Oil Chem. Soc. 72:817–821 (1995).

    Article  CAS  Google Scholar 

  13. Kabir-ud-Din, S. Kumar, Kirti, and P.S. Goyal, Micellar Growth in Presence of Alcohols and Amines: A Viscometric Study, Langmuir 12:1490–1494 (1996).

    Article  CAS  Google Scholar 

  14. David, S.L., S. Kumar, and Kabir-ud-Din, Viscosities of Cetylpyridinium Bromide Solutions (Aqueous and Aqueous KBr) in the Presence of Alcohols and Amines, J. Chem. Eng. Data 42:198–201 (1997).

    Article  CAS  Google Scholar 

  15. Winsor, P.A., Hydrotropy, Solubilization and Related Emulsification Processes, Trans. Faraday Soc. 2. 44:376–398 (1948).

    Article  CAS  Google Scholar 

  16. Eriksson J.C., and G. Gillberg, NMR Studies of the Solubilization of Aromatic Compounds in Cetyltrimethylammonium Bromide Solution II, Acta Chem. Scand. 20:2019–2027 (1966).

    Article  CAS  Google Scholar 

  17. Venable, R.L., K.L. Elders, and J. Fang, Microemulsions with High Water Solubilizing Capacity at High Hydrocarbon Levels and Very Low Surfactant Concentrations, J. Colloid Interface Sci. 109:330–335 (1986).

    Article  CAS  Google Scholar 

  18. Abe, M., D. Schechter, R.S. Schechter, W.H. Wade, U. Weersdooriya, and S. Xiv, Microemulsion Formation with Branched Tail Polyoxyethlene Sulfonate Surfactants, Ibid.:342–356 (1986).

    Article  CAS  Google Scholar 

  19. Almgren, M., and S. Swarup, Size of Sodium Dodecyl Sulfate Micelles in the Presence of Additives. 2. Aromatic and Saturated Hydrocarbons, J. Phys. Chem. 86:4212–4216 (1982).

    Article  CAS  Google Scholar 

  20. Ozeki, S., and S. Ikeda, The Viscosity Behavior of Aqueous NaCl Solutions of Dodecyl Dimethyl Ammonium Chloride and the Flexibility of its Rod-like Micelle, J. Colloid Interface Sci. 77:219–231 (1980).

    Article  CAS  Google Scholar 

  21. Ogino, K., and N. Takeshita, Electrophoresis and Diffusion Studies of the Solubilization of Polar and Nonpolar Oily Compounds with Sodium Dodecyl Sulfate. II, Bull. Chem. Soc. Jpn. 53:611–615 (1980).

    Article  CAS  Google Scholar 

  22. Rosen, M.J., Surfactants and Interfacial Phenomena, Wiley, New York, 1989.

    Google Scholar 

  23. Lindblom, G., B. Lindman, and L. Mandell, Effect of Micellar Shape and Solubilization on Counterion Binding Studied by 81Br NMR, J. Colloid Interface Sci. 42:400–409 (1973).

    Article  CAS  Google Scholar 

  24. Hoffmann, H., Fascinating Phenomena in Surfactant Chemistry, Adv. Colloid Interface Sci. 32:123–150 (1990).

    Article  CAS  Google Scholar 

  25. Mukerjee, P., Formation and Some Properties of Micelles, Ber Bunsenges. Phys. Chem. 82:931–936 (1978).

    Google Scholar 

  26. Gadelle, F., W.J. Koros, and R.S. Schechter, Solubilization Isotherms of Aromatic Solutes in Surfactant Aggregates, J. Colloid Interface Sci. 170:57–64 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kumar, S., David, S.L. & Kabir-ud-Din Effects of various hydrocarbons on micellar growth. J Amer Oil Chem Soc 74, 797–801 (1997). https://doi.org/10.1007/s11746-997-0221-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-997-0221-y

Key words

Navigation