Skip to main content
Log in

Lipid Composition and Antioxidant Capacity Evaluation in Tilapia Fillets Supplemented with a Blend of Oils and Vitamin E

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Since the nutritional value of farm-raised fish fillets is directly related to the diet provided, we supplemented the diet of Tilapia (Oreochromis niloticus) with a blend of chia (Salvia hispanica L.) oil, tung (Aleurites fordii) oil, and conjugated linoleic acid (CLA) to evaluate the effects on the fatty acid composition. Vitamin E was also added to the diet to improve the antioxidant capacity of tilapia fillets. We observed an increase in α-linolenic acid content (from 6.56 to 19.03 mg g−1 of total lipids), as well as the incorporation of CLA and conjugated linolenic acid (CLnA) isomers in the fillets. The addition of vitamin E resulted in the antioxidant capacity improvement of the fillets and higher values were found after 15 feeding days (39.25 µmol TE g−1 in the Ferric Reducing Ability Power assay). Supplementation proved to be an excellent tool to improve the nutritional value of fish fillets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

CLA:

Conjugated linoleic acid

CLnA:

Conjugated linolenic acid

DHA:

Docosahexaenoic acid

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

EPA:

Eicosapentaenoic acid

ESA:

Eleostearic acid

FAME:

Fatty acid methyl esters

FRAP:

Ferric reducing ability power

H-ORACFL :

Hydrophilic-oxygen radical absorbance capacity

LA:

Linoleic acid

LC-PUFA:

Long-chain polyunsaturated fatty acids

LNA:

Alpha-linolenic acid

L-ORACFL :

Lipophilic-oxygen radical absorbance capacity

MUFA:

Monounsaturated fatty acids

n-3:

Omega-3 fatty acids

n-6:

Omega-6 fatty acids

PUFA:

Polyunsaturated fatty acids

RMCD:

Randomly methylated β-cyclodextrin

SFA:

Saturated fatty acids

TAC:

Total antioxidant capacity

TE:

Trolox equivalent

TL:

Total lipids

References

  1. FAO (2014) The state of world fisheries and aquaculture 2014. Food and Agriculture Organization of United Nations, Rome

    Google Scholar 

  2. Justi KC, Hayashi C, Visentainer JV, Souza NE, Matsushita M (2003) The influence of feed supply time on the fatty acid profile of Nile tilapia (Oreochromis niloticus) fed on a diet enriched with n-3 fatty acids. Food Chem 80:489–493

    Article  CAS  Google Scholar 

  3. Visentainer JV, Souza NE, Makoto M, Hayashi C, Franco MRB (2005) Influence of diets enriched with flaxseed oil on the α-linolenic, eicosapentaenoic and docosahexaenoic fatty acid in Nile tilapia (Oreochromis niloticus). Food Chem 90:557–560

    Article  CAS  Google Scholar 

  4. Dubois V, Breton S, Linder M, Fanni J, Parmentier M (2007) Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur J Lipid Sci Technol 109:710–732

    Article  CAS  Google Scholar 

  5. Ng W, Chong C, Wang Y, Romano N (2013) Effects of dietary fish and vegetable oils on the growth, tissue fatty acid composition, oxidative stability and vitamin E content of red hybrid tilapia and efficacy of using fish oil finishing diets. Aquaculture 97:372–375

    Google Scholar 

  6. Tonial IB, Stevanato FB, Matsushita M, Souza NE, Furuya WM, Visentainer JV (2009) Optimization of flaxseed oil feeding time length in adult Nile tilapia (Oreochromis niloticus) as a function of muscle omega-3 fatty acids composition. Aquac Nutr 15:564–568

    Article  CAS  Google Scholar 

  7. Peiretti PG, Meineri G (2008) Effects on growth performance, carcass characteristics, and the fat and meat fatty acid profile of rabbits fed diets with chia (Salvia hispanica L.) seed supplements. Meat Sci 80:1116–1121

    Article  CAS  Google Scholar 

  8. Ayerza R, Coates W (2007) Effect of dietary alpha-linolenic fatty acid derived from chia when fed as ground seed, whole seed oil on lipid content and fatty acid composition of fat plasma. Ann Nutr Metab 51:27–34

    Article  CAS  Google Scholar 

  9. Ayerza R (1995) Oil content and fatty acid composition of chia (Salvia hispanica L.) from five northwestern locations in Argentina. J Am Oil Chem Soc 72:1079–1081

    Article  CAS  Google Scholar 

  10. Ayerza R, Coates W (2000) Dietary levels of chia: influence on yolk cholesterol, lipid content and fatty acid composition for two strains of hens. Poult Sci 79:724–739

    Article  CAS  Google Scholar 

  11. Ixtaina VY, Martínez ML, Spotorno V, Mateo CM, Maestri DM, Diehl BWK, Nolasco SM, Tomás MC (2011) Characterization of chia seed oils obtained by pressing and solvent extraction. J Food Compos Anal 24:166–174

    Article  CAS  Google Scholar 

  12. Degen C, Ecker J, Piegholdt S, Liebisch G, Schmitz G, Jahreis G (2011) Metabolic and growth inhibitory effects of conjugated fatty acids in the cell line HT-29 with special regard to the conversion of t11, t13-CLA. Biochim Biophys Acta 1811:1070–1080

    Article  CAS  Google Scholar 

  13. Pariza MW, Park Y, Cook ME (2001) The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 40:283–298

    Article  CAS  Google Scholar 

  14. Santos LD, Furuya WM, Silva TSC, Michelato M, Matsushita M (2009) Ácido linoléico conjugado em dietas para pacu: tempo de deposição, desempenho e perfil de ácidos graxos. Rev Bras Zootec 38:980–988

    Article  Google Scholar 

  15. Santos LD, Furuya WM, Silva LCR, Matsushita M, Castro Silva TS (2011) Dietary conjugated linoleic acid (CLA) for finishing Nile tilapia. Aquac Nutr 17:70–81

    Article  Google Scholar 

  16. Suzuki R, Noguchi R, Ota T, Abe M, Miyashita K, Kawada T (2001) Cytotoxic effect of conjugated trienoic fatty acids on mouse tumor and human monocytic leukemia cells. Lipids 36:477–482

    Article  CAS  Google Scholar 

  17. Saha SS, Patra M, Ghosh M (2012) In vitro antioxidant study of vegetable oils containing conjugated linolenic acid isomers. LWT Food Sci Technol 46:10–15

    Article  CAS  Google Scholar 

  18. Shinohara N, Tsuduki T, Ito J, Honma T, Kijima R, Sugawara S, Arai T, Yamasaki M, Ikezaki A, Yokoyama M, Nishiyama K, Nakagawa K, Miyazawa T, Ikeda I (2012) Jacaric acid, a linolenic acid isomer with a conjugated triene system, has a strong antitumor effect in vitro and in vivo. Biochim Biophys Acta 1821:980–988

    Article  CAS  Google Scholar 

  19. Bonafé EG, Boeing JS, Matsushita M, Claus T, Santos OO, Oliveira CC, Eberlin MN, Visentainer JV (2013) Evaluation of conjugated fatty acids incorporation in tilapia through GC–FID and EASI–MS. Eur J Lipid Sci Technol 115:1139–1145

    Google Scholar 

  20. Morrissey PA, Buckley DJ, Sheehy PJA (1994) Vitamin E and meat quality. Proc Nutr Soc 53:289–295

    Article  CAS  Google Scholar 

  21. Navarro RD, Navarro FKSP, Filho OPR, Ferreira WM, Pereira MM, Filho JTS (2012) Quality of polyunsaturated fatty acids in Nile tilapias (Oreochromis niloticus) fed with vitamin E supplementation. Food Chem 134:215–218

    Article  CAS  Google Scholar 

  22. NRC (1993) Nutrient requirements of warmwater fishes and shellfishes. National Academy Press, Washington

    Google Scholar 

  23. AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Arlington

    Google Scholar 

  24. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  25. Hartman L, Lago RC (1973) Rapid preparation of fatty acid methyl esters from lipids. Lab Pract 22:475–476

    CAS  Google Scholar 

  26. Maia EL, Rodriguez-Amaya DB (1993) Avaliação de um método simples e econômico para a metilação de ácidos graxos com lipídios de diversas espécies de peixes. Rev Inst Adolfo Lutz 53:27–35

    CAS  Google Scholar 

  27. Martin CA, Oliveira CC, Visentainer JV, Matsushita M, Souza NE (2008) Optimization of the selectivity of a cyanopropyl stationary phase for the gas chromatographic analysis of trans fatty acids. J Chromatogr A 1194:111–117

    Article  CAS  Google Scholar 

  28. Visentainer JV (2012) Aspectos analíticos da resposta do detector de ionização em chama para ésteres de ácidos graxos em biodiesel e alimentos. Quim Nova 35:274–279

    Article  CAS  Google Scholar 

  29. Serpen A, Gökmen V, Fogliano V (2012) Total antioxidant capacities of raw and cooked meats. Meat Sci 90:60–65

    Article  CAS  Google Scholar 

  30. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  31. Re R, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  32. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity [oxygen radical absorbance capacity (ORACFL)] of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279

    Article  CAS  Google Scholar 

  33. Wu C, Duckett SK, Neel JPS, Fontenot JP, Clapham WM (2008) Influence of finishing systems on hydrophilic and lipophilic oxygen radical absorbance capacity (ORAC) in beef. Meat Sci 80:662–667

    Article  CAS  Google Scholar 

  34. Santos LD, Furuya WM, Matsushita M, Silva LCR, Silva TSC, Botaro D (2007) Ácido linoléico conjugado (CLA) em dietas para tilápia-do-nilo: desempenho produtivo, composição química e perfil de ácidos graxos. Rev Bras Zootec 36:1481–1488

    Article  Google Scholar 

  35. Berge GM, Ruyter B, Asgard T (2004) Conjugated linoleic acid in diets for juvenile Atlantic salmon (Salmo salar); effects on fish performance, proximate composition, fatty acid and mineral content. Aquaculture 237:365–380

    Article  CAS  Google Scholar 

  36. Banni S, Angioni E, Casu V, Melis MP, Carta G, Corongiu FP, Thompson H, Ip C (1999) Decrease in linoleic acid metabolites as a potential mechanism in cancer risk reduction by conjugated linoleic acid. Carcinogenesis 20:1019–1024

    Article  CAS  Google Scholar 

  37. Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21:495–505

    Article  CAS  Google Scholar 

  38. Kim ND, Mehta R, Yu W, Neeman I, Livney T, Amichay A, Poirier D, Nicholls P, Kirby A, Jiang W, Mansel R, Ramachandran C, Rabi T, Kaplan B, Lansky E (2002) Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res Treat 71:203–217

    Article  CAS  Google Scholar 

  39. Yang L, Leung KY, Cao Y, Huang Y, Ratnayake WM, Chen ZY (2005) Alpha-linolenic acid but not conjugated linolenic acid is hypocholesterolaemic in hamsters. Br J Nutr 93:433–438

    Article  CAS  Google Scholar 

  40. Tsuzuki T, Tokuyama Y, Igarashi M, Nakagawa K, Ohsaki Y, Komai M, Miyazawa T (2004) α-Eleostearic acid (9Z11E13E−18:3) is quickly converted to conjugated linoleic acid (9Z11E−18:2) in rats. J Nutr 134:2634–2639

    CAS  Google Scholar 

  41. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2004) Lipophilic and hydrophilic antioxidant capacities of common foods in the united states. J Agric Food Chem 52:4026–4037

    Article  CAS  Google Scholar 

  42. Müller L, Fröhlich K, Böhm V (2011) Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem 129:139–148

    Article  Google Scholar 

  43. Gökmen V, Serpen A, Fogliano V (2009) Direct measurement of total antioxidant capacity of foods: the ‘QUENCHER’ approach. Trends Food Sci Technol 20:278–288

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for a master fellowship, and WACKER Química do Brasil Ltd. for supplying the randomly methylated β-cyclodextrin (RMCD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Carbonera.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 61 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbonera, F., Montanher, P.F., Figueiredo, I.L. et al. Lipid Composition and Antioxidant Capacity Evaluation in Tilapia Fillets Supplemented with a Blend of Oils and Vitamin E. J Am Oil Chem Soc 93, 1255–1264 (2016). https://doi.org/10.1007/s11746-016-2869-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-016-2869-7

Keywords

Navigation