Skip to main content
Log in

Antioxidant Activity of Seaweed Extracts: In Vitro Assays, Evaluation in 5 % Fish Oil-in-Water Emulsions and Characterization

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

In this study the antioxidant activity of absolute ethanol, 50 % ethanol and water extracts of two species of seaweeds, namely Fucus serratus and Polysiphonia fucoides, were evaluated both in in vitro assays and in 5 % fish oil-in-water (o/w) emulsions. The 50 % ethanolic extracts of P. fucoides showed higher antioxidant activity both in in vitro assays and in 5 % oil-in-water emulsion in the presence or absence of iron. In spite of the higher phenolic content and very good antioxidant activity in some of the in vitro assays, the absolute ethanol extracts of both the species showed a pro-oxidative tendency in 5 % fish oil-in-water emulsion in the presence or absence of iron. In order to investigate the reason for the higher antioxidant activity of 50 % ethanolic extracts of P. fucoides, these extracts were further fractionated into polyphenol-rich, protein-rich, polysaccharide-rich and low-molecular-weight fractions. These fractions were tested both in in vitro and in 5 % oil-in-water emulsions. The results of the present study showed that the main effect was due to the phenolic compounds. In conclusion, the 50 % ethanolic extracts of P. fucoides can be a potential source of natural antioxidants as these extracts have antioxidant activities similar to those of synthetic antioxidants such as BHT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frankel EN (2005) Lipid oxidation. The Oily Press, Dundee

    Book  Google Scholar 

  2. Yagi K (1987) Lipid peroxides and human diseases. Chem Phys Lipids 45:337–351

    Article  CAS  Google Scholar 

  3. Witztum JL (1994) The oxidation hypothesis of atherosclerosis. Lancet 344:793–795

    Article  CAS  Google Scholar 

  4. Schwartz JL (1996) The dual roles of nutrients as anti-oxidants and pro-oxidants: their effects on tumour cell growth. J Nutri 126:1221S–1227S

    CAS  Google Scholar 

  5. Frankel EN (1998). Antioxidants. Lipid oxidation, 1st edn. The Oily Press, Dundee, pp 129–166

  6. Linderschmidt R, Trylka A, Goad M, Witschi H (1986) The effects of dietary butylated hydroxytoluene on liver and colon tumor development in mice. Toxicol 38:151–160

    Article  Google Scholar 

  7. Branen AL (1975) Toxicology and biochemistry of butylated hydroxytoluene and butylated hydroxyanisole. J Am Oil Chem Soc 52:59–63

    Article  CAS  Google Scholar 

  8. Ito N, Fukushima S, Hasebawa A (1983) Carcinogenicity of BHA in F344 rats. J Natl Cancer Inst 70:343–352

    CAS  Google Scholar 

  9. Fujihara M, Nagumo T (1993) An influence of the structure of alginate on the chemotactic activity of macrophages and the antitumor activity. Carbohydr Res 243:211–216

    Article  CAS  Google Scholar 

  10. Konig GM, Wright AD, Sticher O, Anghofer CK, Pezutto JM (1994) Biological activities of selected marine natural products. Planta Medica 60:532–537

    Article  CAS  Google Scholar 

  11. Santoso J, Yoshie Y, Suzuki T (2002) The distribution and profile of nutrients and catechins of some Indonesian seaweeds. Fish Sci 68:1647–1648

    Google Scholar 

  12. Yoshie-Stark Y, Wang W, Petillo D, Suzuki T (2000) Distribution of catechins in Japanese seaweeds. Fish Sci 66:998–1000

    Article  Google Scholar 

  13. Yoshie-Stark Y, Hsieh YP, Suzuki T (2003) Distribution of flavonoids and related compounds from seaweeds in Japan. J Tokyo Univ Fish 89:1–6

    Google Scholar 

  14. Ahn GN, Kim KN, Cha SH, Song CB, Lee J, Heo MS, Yeo IK, Lee NH, JeeYH Kim JS, Heu MS, Jeon YJ (2007) Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H2O2-mediated DNA damage. Euro Food Res Technol 226:71–79

    Article  CAS  Google Scholar 

  15. Rupérez P, Ahrazem O, Leal JA (2002) Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50:840–845

    Article  Google Scholar 

  16. Kobayashi M, Sakamoto Y (1999) Singlet oxygen quenching ability of astaxanthin esters from the green algae Haematococcus pluvialis. Biotechnol Lett 21:265–269

    Article  CAS  Google Scholar 

  17. Yan XJ, Chuda Y, Suzuki M, Nagata T (1999) Fucoxanthin as the major antioxidant in Hizikia fusiformis, a common edible seaweed. Biosci Biotech Biochem 63:605–607

    Article  CAS  Google Scholar 

  18. Farvin KHS, Jacobsen C (2013) Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast 138:1670–1681

  19. Gülçin I` (2006) Antioxidant activity of caffeic acid (3,4-dihydroxycinnamicacid). Toxicol 217:213–220

    Article  Google Scholar 

  20. Sørensen A, Haahr A, Becker EM, Skibsted LH, Bergenståhl B, Nilsson L, Jacobsen C (2008) Interactions between iron, phenolic compounds, emulsifiers, and ph in omega-3-enriched oil-in-water emulsions. J Agric Food Chem 56:1740–1750

    Article  Google Scholar 

  21. Singleton VL, Rossi JA (1965) Colourimetry of total phenolics with phosphomolybdic-phosphotungtic acid reagents. Am J Enol Viticult 16:144–158

    CAS  Google Scholar 

  22. Onyeneho SN, Hettiarachchy NS (1993) Antioxidant activity, fatty acid and phenolic acid composition of potato peels. J Sci Food Agric 62:345–350

    Article  CAS  Google Scholar 

  23. Farvin KHS, Andersen LL, Nielsen HH, Jacobsen C, Jakobsen G, Johansson I, Jessen F (2014) Antioxidant activity of Cod (Gadusmorhua) protein hydrolysates: in vitro assays and evaluation in 5% fish oil-in-water emulsion. Food Chem 149:326–334

    Article  Google Scholar 

  24. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:900–917

    Article  Google Scholar 

  25. International IDF standards (1991) Section 74A: 1991. International Dairy Federation, IDF-square Vergot 41. Brussels, Belgium

    Google Scholar 

  26. AOCS (1992) official method Ce 8-89. Determination of tocopherols and tocotrienols in vegitable oils and fats by HPLC. Champaign, AOCS

  27. Staub AM (1965) Removal of proteins: sevag method. Methods Carbohydr Chem 5:5–6

    CAS  Google Scholar 

  28. Bradford MM (1976) A dye binding assay for protein. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  29. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC (2005) Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem 339:69–72

    Article  CAS  Google Scholar 

  30. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  31. Farvin KHS, Baron CP, Nielsen NS, Otte J, Jacobsen C (2010) Antioxidant activity of yoghurt peptides: part 2—characterisation of peptide fractions. Food Chem 123:1090–1097

    Article  Google Scholar 

  32. Wang T, Jónsdóttir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116:240–248

    Article  CAS  Google Scholar 

  33. Ragan MA, Glombitza KW (1986) Physodes and the phenolic compounds of brown algae 4. Oligomeric polyphloroglucinols from Fucus vesiculosus -Photoplate mass-spectrometric investigation. Phytochem 21:2709–2711

    Article  Google Scholar 

  34. Marxen K, Vanselow KH, Lippemeier S, Hintze R, Ruser A, Hansen UP (2007) Determination of DPPH radical oxidation caused by methanolic extracts of some microalgal species by linear regression analysis of spectrophotometric measurements. Sensors 7:2080–2095

    Article  CAS  Google Scholar 

  35. Zhang Q, Zhang J, Shen J, Silva A, Dennis DA, Barrow CJ (2007) A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. Eighteenth international seaweed symposium. Develop App Phycol 1:219–224

    Article  Google Scholar 

  36. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Food Sci Technol 28:25–30

    CAS  Google Scholar 

  37. Fujimoto K, Ohmura H, Kaneda T (1985) Screening for antioxygenic compounds in marine algae and bromophenols as effective principles in a red algae Polysiphonia ulceolate. Bull Jap Soc Sci Fish 51:1139–1143

    Article  CAS  Google Scholar 

  38. Yan X, Nagata T, Fan X (1998) Antioxidative activities in some common seaweeds. Plant Food Hum Nutr 52:253–262

    Article  CAS  Google Scholar 

  39. Toth G, Pavia H (2000) Lack of phlorotannin induction in the brown seaweed Ascophyllum nodosum in response to increased copper concentrations. Mar Ecol Prog Ser 192:119–126

    Article  CAS  Google Scholar 

  40. Kuda T, Tsunekawa M, Hishi T, Araki Y (2005) Antioxidant properties of dried ‘kayamo-nori’, a brown alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). Food Chem 89:617–622

    Article  CAS  Google Scholar 

  41. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med 20:933–956

    Article  CAS  Google Scholar 

  42. Wang BG, Zhang WW, Duan XJ, Li XM (2009) In vitro antioxidative activities of extract and semi-purified fractions of the marine red alga, Rhodomela confervoides (Rhodomelaceae). Food Chem 113:1101–1105

    Article  CAS  Google Scholar 

  43. Dorman HJD, Kosar M, Kahlos K, Holm Y, Hiltunen R (2003) Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J Agric Food Chem 51:4563–4569

    Article  CAS  Google Scholar 

  44. Jiménez-Escrig A, Jiménez-Jiménez I, Pulido R, Saura-Calixto F (2001) Antioxidant activity of fresh and processed edible seaweeds. J Sci Food Agric 81:530–534

    Article  Google Scholar 

  45. Milo C, Grosch W (1996) Changes in the odorants of boiled salmonand cod as affected by the storage of the raw material. J Agric Food Chem 44:2366–2371

    Article  CAS  Google Scholar 

  46. Venkateshwarlu G, Let MB, Meyer AS, Jacobsen C (2004) Modeling the sensory impact of defined combinations of volatile lipid oxidation products on fishy and metallic off-flavors. J Agric Food Chem 52:1635–1641

    Article  CAS  Google Scholar 

  47. Hartvigsen K, Lund P, Hansen LF, Hølmer G (2000) Dynamic headspace gas chromatography/mass spectrometry characterization of volatiles produced in fish oil enriched mayonnaise during storage. J Agric Food Chem 48:4858–4867

    Article  CAS  Google Scholar 

  48. Kamal-Eldin A, Appelqvist L (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Article  CAS  Google Scholar 

  49. Burlakova EB, Mazaletskaya LI, Sheludchenko NL, Shishkina LN (1995) Inhibitory effect of the mixtures of phenol antioxidants and phosphatidylcholine. Russ Chem Bull 44:1020–1041

    Article  Google Scholar 

  50. El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, Young AJ (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48

    Article  CAS  Google Scholar 

  51. Duan XJ, Zhang WW, Li XM, Wang BG (2006) Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chem 95:37–43

    Article  CAS  Google Scholar 

  52. Qi H, Zhao T, Zhang T, Li Z, Zhao Z, Xing R (2005) Antioxidant activity of different molecular weight sulfated polysaccharides from Ulvapertusa Kjellm (Chlorophyta). J Appl Phycol 17:527–534

    Article  CAS  Google Scholar 

  53. Chen H, Qu Z, Fu L, Dong P, Zhang X (2009) Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. J Food Sci 74:469–474

    Article  Google Scholar 

  54. Marcuse R (1962) The effect of some amino acids on the oxidation of linoleic acid and its methyl ester. J Am OilChemSoc. 39:97–103

    CAS  Google Scholar 

  55. Marcuse R (1960) Antioxidative effect of amino acids. Nature 186:886–887

    Article  CAS  Google Scholar 

  56. Karel M, Schaich K, Roy RB (1975) Interaction of peroxidising methyl linoleate with some proteins and amino acids. J Ag Food Chem 23:159–165

    Article  CAS  Google Scholar 

  57. Karel M, Tannenbaum SR, Wallace DH, Maloney H (1966) Antioxidation of methyl linoleate in freeze-dried model systems. III. Effects of added amino acids. J Food Sci 31:892–896

    Article  CAS  Google Scholar 

  58. Decker EA (1998) Antioxidant mechanisms. In: Akoh CC, Min DB (eds) Food lipids: chemistry, nutrition and biotechnology. Marcel Dekker, New York, pp 397–421

    Google Scholar 

  59. Miller DM, Aust SD (1989) Studies of ascorbic—dependent, iron catalysed lipid peroxidation. Arch Biochem Biophys 271:113–119

    Article  CAS  Google Scholar 

  60. Minotti G, Aust SD (1987) The requirement of iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol Chem 262:1098–1104

    CAS  Google Scholar 

  61. Mcclements DJ, Decker EA (2000) Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems. J Food Sci 65:1270–1282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Danish Research Council for Technology and Production. The help provided by the technician Inge Holmberg with the HPLC analysis of amino acids, Anis Arnous with the monosaccharide analysis and Susan Løvstad Holdt with collecting seaweeds is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Sabeena Farvin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabeena Farvin, K.H., Jacobsen, C. Antioxidant Activity of Seaweed Extracts: In Vitro Assays, Evaluation in 5 % Fish Oil-in-Water Emulsions and Characterization. J Am Oil Chem Soc 92, 571–587 (2015). https://doi.org/10.1007/s11746-015-2624-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-015-2624-5

Keywords

Navigation