Skip to main content
Log in

Biodegradable Poly(ε-Caprolactone)-Based Graft Copolymers Via Poly(Linoleic Acid): In Vitro Enzymatic Evaluation

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Well-defined graft copolymers based on poly(ε-caprolactone) (PCL) via poly(linoleic acid) (PLina), are derived from soybean oil. Poly(linoleic acid)-g-poly(ε-caprolactone) (PLina-g-PCL) and poly(linoleic acid)-g-poly(styrene)-g-poly(ε-caprolactone) (PLina-g-PSt-g-PCL) were synthesized by ring-opening polymerization of ε-caprolactone initiated by PLina and one-pot synthesis of graft copolymers, and by ring-opening polymerization and free radical polymerization by using PLina, respectively. PLina-g-PCL, PLina-g-PSt-g-PCL3, and PLina-g-PSt-g-PCL4 copolymers containing 96.97, 75.04 and 80.34 mol% CL, respectively, have been investigated regarding their enzymatic degradation properties in the presence of Pseudomonas lipase. In terms of weight loss, after 1 month, 51.5 % of PLina-g-PCL, 18.8 % of PLina-g-PSt-g-PCL3, and 38.4 % of PLina-g-PSt-g-PCL4 were degraded, leaving remaining copolymers with molecular weights of 16,140, 83,220 and 70,600 Da, respectively. Introducing the PLina unit into the copolymers greatly decreased the degradation rate. The molar ratio of [CL]/[Lina] dramatically decreased, from 21.3 to 8.4, after 30 days of incubation. Moreover, reduced PCL content in PLina-g-PSt-g-PCL copolymers decreased the degradation rate, probably due to the PSt enrichment within the structure, which blocks lipase contact with PCL units. Thus, copolymerization of PCL with PLina and PSt units leads to a controllable degradation profile, which encourages the use of these polymers as promising biomaterials for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seyednejad H, Gawlitta D, Kuiper RV, Bruin A, van Nostrum CF, Vermonden T, Dhert WJA, Hennink WE (2012) In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone). Biomaterials 33:4309–4318

    Article  CAS  Google Scholar 

  2. Causa F, Netti PA, Ambrosio L (2007) A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28:5093–5099

    Article  CAS  Google Scholar 

  3. Ng KW, Hutmacher DW, Schantz JT, Ng CS, Too HP, Lim TC, Phan TT, Teoh SH (2001) Evaluation of ultra-thin poly(3-caprolactone) films for tissue-engineered skin. Tissue Eng 7:441–455

    Article  CAS  Google Scholar 

  4. Ciapetti G, Ambrosi L, Savarino L, Granchi D, Cenni E, Baldini N, Pagani S, Guizzardi S, Causa F, Giunti A (2003) Osteoblast growth and function in porous poly 3-caprolactone matrices for bone repair: a preliminary study. Biomaterials 24:3815–3824

    Article  CAS  Google Scholar 

  5. Gerçek I, Tığlı RS, Gümüşderelioğlu M (2008) A novel scaffold based on formation and agglomeration of PCL microbeads by freeze-drying. J Biomed Mater Res A 86A(4):1012–1022

    Article  Google Scholar 

  6. Tığlı RS, Kazaroğlu NM, Maviş B, Gümüşderelioğlu M (2011) Cellular behaviour on epidermal growth factor (EGF) immobilized PCL/gelatin nanofibrous scaffolds. J Biomater Sci Polym Ed 22(1–3):207–223

    Google Scholar 

  7. Gümüşderelioğlu M, Dalkıranoğlu S, Aydın Tığlı RS, Çakmak S (2011) A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix. J Biomed Mater Res A 98A(3):461–472

    Article  Google Scholar 

  8. Peng H, Ling J, Liu J, Zhu N, Ni X, Shen Z (2010) Controlled enzymatic degradation of poly(3-caprolactone)-based copolymers in the presence of porcine pancreatic lipase. Polym Degrad Stabil 95:643–650

    Article  CAS  Google Scholar 

  9. Zhu GX, Ling J, Shen ZQ (2003) Isothermal crystallization of random copolymers of 3-caprolactone with 2,2-dimethyltrimethylene carbonate. Polymer 44:5827–5832

    Article  CAS  Google Scholar 

  10. Andjelkovic DD, Valverde M, Henna P, Li FK, Larock RC (2005) Novel thermosets prepared by cationic copolymerization of various vegetable oils: synthesis and their structure property relationships. Polymer 46:9674–9685

    Article  CAS  Google Scholar 

  11. Cakmakli B, Hazer B, Tekin IO, Kizgut S, Koksal M, Menceloglu Y (2004) Synthesis and characterization of polymeric linseed oil grafted methyl methacrylate or styrene. Macromol Biosci 4:649–655

    Article  CAS  Google Scholar 

  12. Soucek MD, Khattab T, Wu J (2012) Review of autoxidation and driers. Prog Org Coat 73:435–454

    Article  CAS  Google Scholar 

  13. Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12:1893–1909

    Article  CAS  Google Scholar 

  14. Allı A, Allı S, Becer R, Hazer B (2014) One-pot synthesis of poly(linoleic acid)-g-poly(styrene)-g-poly(ε-caprolactone) graft copolymers. J Am Oil Chem Soc 91:849–858

    Article  Google Scholar 

  15. Cakmakli B, Hazer B, Tekin IÖ, Cömert FB (2005) Synthesis and characterization of polymeric soybean oil-g-methyl methacrylate (and n-butyl methacrylate) graft copolymers: biocompatibility and bacterial adhesion. Biomacromolecules 6:1750–1758

    Article  CAS  Google Scholar 

  16. Allı A, Hazer B (2008) Poly(N-isopropyl acrylamide) thermoresponsive cross-linked conjugates containing polymeric soybean oil and/or polypropylene glycol. Eur Poly J 44:1701–1713

    Article  Google Scholar 

  17. Miao S, Sun L, Wang P, Liu R, Su Z, Zhang S (2012) Soybean oil-based polyurethane networks as candidate biomaterials: synthesis and biocompatibility. Eur J Lipid Sci Technol 114:1165–1174

    Article  CAS  Google Scholar 

  18. Aydın Tığlı RS, Hazer B, Acar M, Gümüşderelioğlu M (2013) Osteogenic activities of polymeric soybean oil-g-polystyrene membranes. Polym Bull 70(7):2065–2082

    Article  Google Scholar 

  19. Gan Z, Liang Q, Zhang J, Jing X (1997) Enzymatic degradation of poly(3-caprolactone) film in phosphate buffer solution containing lipases. Polym Degrad Stabil 56:209–213

    Article  CAS  Google Scholar 

  20. Li S, Liu L, Garreau H, Vert M (2003) Lipase-catalyzed biodegradation of poly(3-caprolactone) blended with various polylactide-based polymers. Biomacromolecules 4:372–377

    Article  CAS  Google Scholar 

  21. He F, Li SM, Vert M, Zhuo RX (2003) Enzyme-catalyzed polymerization and degradation of copolymers prepared from ε-caprolactone and poly(ethylene glycol). Polymer 44:5145–5153

    Article  CAS  Google Scholar 

  22. Allı A, Hazer B (2011) Synthesis and characterization of poly(N-isopropyl acryl amide)-g-poly(linoleic acid)/poly(linolenic acid) graft copolymers. J Am Oil Chem Soc 88:255–263

    Article  Google Scholar 

  23. Ma Y, Zheng Y, Zeng X, Jiang L, Chen H, Liu R, Huang L, Mei L (2011) Novel docetaxel-loaded nanoparticles based on PCL-Tween 80 copolymer for cancer treatment. Int J Nanomed 6:2679–2688

    CAS  Google Scholar 

  24. Li S, Vert M (1999) Biodegradable polymers: polyesters. In: Mathiowitz E (ed) the encyclopedia of controlled drug delivery. Wiley, New York, pp 71–93

    Google Scholar 

  25. Takemura R, Werb Z (1984) Secretory products of macrophages and their physiological functions. Am J Physiol Cell Physiol 15:C1–C9

    Google Scholar 

  26. Kulkarni A, Reiche J, Hartmann J, Kratz K, Lendlein A (2008) Selective enzymatic degradation of poly(ε-caprolactone) containing multiblock copolymers. Eur J Pharm Biopharm 68:46–56

    Article  CAS  Google Scholar 

  27. Li S, Garreau H, Pauvert B, McGrath J, Toniolo A, Vert M (2002) Enzymatic degradation of block copolymers prepared from 3-caprolactone and poly(ethylene glycol). Biomacromolecules 3:525–530

    Article  CAS  Google Scholar 

  28. Cho K, Lee J, Xing P (2002) Enzymatic degradation of blends of poly(ε-caprolactone) and poly(styrene-co-acrylonitrile) by Pseudomonas lipase. J Appl Polym Sci 83:868–879

    Article  CAS  Google Scholar 

  29. Gan Z, Yu D, Zhong Z, Liang Q, Jing X (1999) Enzymatic degradation of poly(3-caprolactone)/poly(dl-lactide) blends in phosphate buffer solution. Polymer 40:2859–2862

    Article  CAS  Google Scholar 

  30. Azevedo HS, Reis RL (2005) Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate. In: Reis RL, San Román J (eds) Biodegradable systems in tissue engineering and regenerative medicine. CRC Press, Florida, pp 177–197

    Google Scholar 

  31. He F, Li S, Garreau H, Vert M, Zhuo R (2005)Enzyme-catalyzed polymerization and degradation of copolyesters of ε-caprolactone and γ-butyrolactone. Polymer 46:12682–12688

    Article  CAS  Google Scholar 

  32. Darwis D, Mitomo H, Enjoji T, Yoshi F, Makuuchi K (1998) Enzymatic degradation of radiation crosslinked poly(ε-caprolactone). Polym Degrad Stab 62:259–265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Turkish Scientific Research Council (Grants Numbers: 110T884, 211T016) and Bülent Ecevit University Research Fund (Grant Number: 2012-17-21-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Seda Tığlı Aydın or Baki Hazer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11746_2015_2611_MOESM1_ESM.tif

Supplementary material 1: 1H NMR spectra of (a) PLina-g-PCL copolymer degraded after (b) 1 day, (c) 3 days, (d) 5 days, (e) 18 days and (f) 30 days (TIFF 2382 kb)

11746_2015_2611_MOESM2_ESM.tif

Supplementary material 2: 1H NMR spectra of (a) PLina-g-PSt-g-PCL3 copolymer degraded after (b) 1 day, (c) 3 days, (d) 5 days, (e) 18 days and (f) 30 days   (TIFF 2265 kb)

11746_2015_2611_MOESM3_ESM.tif

Supplementary material 3: 1H NMR spectra of (a) PLina-g-PSt-g-PCL4 copolymer degraded after (b) 1 day, (c) 3 days, (d) 5 days, (e) 18 days and (f) 30 days (TIFF 2634 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allı, S., Tığlı Aydın, R.S., Allı, A. et al. Biodegradable Poly(ε-Caprolactone)-Based Graft Copolymers Via Poly(Linoleic Acid): In Vitro Enzymatic Evaluation. J Am Oil Chem Soc 92, 449–458 (2015). https://doi.org/10.1007/s11746-015-2611-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-015-2611-x

Keywords

Navigation