Skip to main content

Advertisement

Log in

Biodegradable poly(lactic acid)-based scaffolds: synthesis and biomedical applications

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Biodegradable polymers are identified as substantial materials for biomedical applications. These polymers have the ability to deteriorate through an unpretentious hydrolysis and eliminated through kidneys’ functions or metabolic processes. Among widely used biodegradable polymers in biomedical applications, poly(lactic acid) (PLA) is becoming one of the most paramount polymers. Synthesizing PLA through melt/solution polycondensation polymerizations makes it relatively easy to tailor properties of final product. However, their synthesis reactions are affected by several parameters such as polymerization time, temperature, pressure, catalysts, and the polarity of the solvent. Moreover, equilibrium reactions are controlled through utilizing a hydrophilic monomer such as ethylene glycol (EG). These factors can strongly impact final properties of PLA. Thus, it is indispensable to comprehend the effect of operating parameters during the polymerization process. Optimizing synthesis conditions can be accomplished through reducing side reactions. Furthermore, this can be achieved through racemization by utilizing chain extenders to build high molecular weight and enhance thermal stability. In this review, the design and fabrication of porous PLA scaffolds and their physicomechanical behavior are reviewed. Different PLA scaffold parameters were investigated thoroughly, which include biocompatibility, biodegradability, and mechanical properties for different porosity and pore sizes to mimic the complex architecture of the natural tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sodergard KM, Stolt M (2002) Prog Polym Sci 27:1123–1131

    Article  CAS  Google Scholar 

  2. Cameron DJ, Shaver MP (2011) Chem Soc Rev 40:1761–1768

    Article  CAS  Google Scholar 

  3. Hamachi SM, Kaffashi B (2015) Polym Plast Technol Eng 54:944–953

    Article  CAS  Google Scholar 

  4. Rajendran T, Venugopalan S (2015) J Pharma Sci Res 7:11–12

    Google Scholar 

  5. Rouwkema JNC, Blitterswijk CA (2008) Trends Biotechnol 26:434–441

    Article  CAS  Google Scholar 

  6. Campbell JH, Efendy JL, Han CL, Ann NY (2000) Acad Sci 902:224–232

    Article  CAS  Google Scholar 

  7. Villalobo A, Awojulu G, Turco P (2006) The process of recycling of polyesters with polymeric chain extenders. Johnson Polymer LLC, Sturtevant, pp. 1–17

    Google Scholar 

  8. Wang Y, Fu C, Luo Y, Ruan C, Yaoyao ZJ (2010) Wuhan Uni of Tech-Mater. Sci 25:774–781

    CAS  Google Scholar 

  9. Briassoulis D, Aristopoulou A, Bonora M, Verlodt I (2004) J Eng 88:131–139

    Google Scholar 

  10. Jennifer L, Robert B, Katherine A (2008) J Chem Edu 85:258–264

    Article  Google Scholar 

  11. Chen GX, Kim HS, Yoon JS (2006) Eur. Polym J 42:468–476

    CAS  Google Scholar 

  12. Achmad F, Yamane K, Quan S, Kokugan ST (2009) Chem Eng J 151:342–351

    Article  CAS  Google Scholar 

  13. Julien Q, Bergeret A, Lacrampe MF, Krawczak P (2015) Euro. Polym J 67:40–52

    Article  CAS  Google Scholar 

  14. Ren ZF, Zhou GO, Huang X, Xu WBF (2007) Express. Polym Lett 11:734–742

    Google Scholar 

  15. Takasu A, Narukawa Y, Hirabayashi T (2006) J Polym Sci Part A: Polym. Chem 44:5247–5253

    Article  CAS  Google Scholar 

  16. Ciara ML, Murphy M, Haugh G (2012) J O’Brien Biomat 31:461–469

    Google Scholar 

  17. Lichte P, HCT P, Pufe PK, Fishcer H (2011) J Inj 42:569–578

    Article  CAS  Google Scholar 

  18. Goono NA, Bhaw-Luximon G, Bowlinb LD (2013) Jhurrya. Polym Int 62:523–530

    Article  CAS  Google Scholar 

  19. Rydz J, Sikorska W, Kyulavska W, Chrisova D (2015) Int J Mol Sci 16:564–574

    Article  CAS  Google Scholar 

  20. Scarfato P, Maio LD, Incarnato L (2015) J Appl Polym Sci 132:42597–42609

    Article  CAS  Google Scholar 

  21. Blasius JE, George W, (2006) Charlton, MA, US Patent No. 6984694.

  22. John M, Thomas J, Carbohy S (2008) J Polym 71:343–364

    CAS  Google Scholar 

  23. Doppalapudi S, Jain A, Abraham WK, Domb J (2014) J Polym Adv Technol 25:427–437

    Article  CAS  Google Scholar 

  24. Jennifer L, Katherine B, Aubrecht B (2008) J Chem Edu 85:258–260

    Article  Google Scholar 

  25. Moon SI, Lee CW, Miyamoto MJ (2002) Part A: Polym Chem 38:1673–1687

    Article  Google Scholar 

  26. Adsul MG, Varmab A, Gokhale DV (2007) Green. Chem 9:58–69

    CAS  Google Scholar 

  27. Philip S, Keshavarz TI, Roy I (2007) J Chem Technol Biotechnol 82:233–246

    Article  CAS  Google Scholar 

  28. Lampe KJ, Namba RM, Silverman TR, Bjugstad KB, Mahoney MJ (2009) Biotechnol Bioeng 103:1214–1227

    Article  CAS  Google Scholar 

  29. Lunelli BH, Lasprilla AJ, Martinez GAR, Jardini AL, Maciel FR (2010) In Latin Amer Cong of Artifi Org & Biomat 3:216–228

    Google Scholar 

  30. Dong Y, Mosaval T, Haroosh RJ, Haroos R, Umer R, Takagi H, Lau K-T (2014) J Polym Sci, Part B Polym Phys 52:618–631

    Article  CAS  Google Scholar 

  31. Hofvendahl K, Hahn-Hägerdal B (2000) Microb Technol 26:287–296

    Article  Google Scholar 

  32. Auras R, Harte B, Selke S (2004) Macromo1 Biosci 4:835–846

    Article  CAS  Google Scholar 

  33. Ajoka M, Enomoto K, Suzuki K, Yamaguchi KA (1995) J Envir Polym Degrad 3:225–234

    Article  Google Scholar 

  34. Yildirim E, Yurtsever M (2012) J Polym Res 19:1–11

    Article  CAS  Google Scholar 

  35. Inkinen S, Hakkarainen M, Albertsson A (2011) Sodergrad Biomacro 12:523–533

    Article  CAS  Google Scholar 

  36. Pivsa S, Art S, Niamlang W, Pivsa-Art S, Pavasupree K, Ishimoto HO (2011) Adv Mate Res 20:1301–1306

    Article  CAS  Google Scholar 

  37. Hartmann M H, In: Biopolymers renewable reso, Kap, D. L. (ed.), Springer, Germany (1998) pp. 367–374.

  38. Lim L, Auras T, Rubino R (2008) M Prog Polym Sci 33:852–867

    Google Scholar 

  39. Kim E, Shin EW, Yoo IK, Chung JS, Mol J (2009) J Catal A Chem 298:36–48

    Article  CAS  Google Scholar 

  40. Cheolho L, Sungyeap H, Mod H (2014) Chem appl 2:1–11

    Google Scholar 

  41. Tuominen J Helsinki University of Technology, Depa of Chem Techn 9 2003) Ph.D. thesis.

  42. Baharu MN, Amir A, Kadhum H, Al-Amiery A, Mohamad A (2015) Green Chem Let & Rev 8:31–42

    Article  CAS  Google Scholar 

  43. Benitez J, Heredia-Guerro JA, Guzman-Puyol S, Dominguez E, Heredia A (2015) J. Appl. Polym Sci 132:41328–41338

    Article  CAS  Google Scholar 

  44. Jeff S, Shilpa M, Ramani N (2016) J Appl. Polym Sci 133:43310–43322

    Google Scholar 

  45. Gu SY, Yang MT, Yu TB, Ren J (2008) Polym Int 57:982–994

    Article  CAS  Google Scholar 

  46. Ajioka M, Suizu H, Higuchi C, Kashima T (1998) Polym Degra Stab 59:137–146

    Article  CAS  Google Scholar 

  47. Shen Z, Zhang L, Yu C, Fan L (2004) Polym. Int 53:1013–1022

    Article  CAS  Google Scholar 

  48. Liu C, Jia Y, He A (2013) Int J Polym Sci ID:315917

  49. Bolourchian N, Mahboobian M, Dadashzdeh S (2013) Iran J Pharm Res 12:11–24

    CAS  Google Scholar 

  50. Sheth M, Kumar RA, Dave V, Gross RA, McCarth SP (1997) J. Appl. Polym Sci 66:1495–1505

    Article  CAS  Google Scholar 

  51. Kim SH, Kim YH (1999) Macromol. Symp 144:277–286

    Article  CAS  Google Scholar 

  52. Hiltner A, Hu YS, Topolkaraev V, Baer E (2003) J Polym 44:5711–5723

    Article  CAS  Google Scholar 

  53. Junjie L, Guo S, Wang M, Yeac L, Yao F (2015) RSC Adv 2:19484–19497

    Google Scholar 

  54. Byun Y, Whiteside S, Thomas R, Dharman M, Hughes J, Kim YT (2012) J Appl Polym Sci 124:3577–3586

    Article  CAS  Google Scholar 

  55. Zhang X, Tang Z, Chen X, Yang Y, Pang X, Sun J, Jin X (2014) J Polym Sci Part A: Polym Chem 42:5974–5987

    Google Scholar 

  56. Achilias DS (2007) Macromole Theo & Simu 16:319–330

    Article  CAS  Google Scholar 

  57. Rhim JW, Hong S, Han I (2009) Food Sci. Techno 42:612–624

    CAS  Google Scholar 

  58. Zhang W-X, Wang Y-Z, Chin J (2015) J Polym Sci 26:425–437

    Google Scholar 

  59. Najati E, Mirzadeh H, Zand M (2008) Composite Part A 9:1589–1599

    Article  CAS  Google Scholar 

  60. Kowalski A, Libiszowski J, Duda A, Penczek S (1998) Chem Soc, Div Polym Chem 39:74–87

    CAS  Google Scholar 

  61. Ulery BD, Nair LS, Laurencin CT (2011) J Polym Sci B Polym Phys 49:832–846

    Article  CAS  Google Scholar 

  62. Choubisa B, Patel M, Dholakiya B (2013) Res Chem Inter 39:3063–3074

    Article  CAS  Google Scholar 

  63. Du JY, Lemstra PJ, Nijenhuis A, Aert H, Bastiaasen M (1995) Macromolecules 28:2124–2133

    Article  CAS  Google Scholar 

  64. Aminuddin N, Belcheve ND (2011) Patent US 8501875:B2

    Google Scholar 

  65. Robson F, Sherman W (2002) Macromolecules 35:1504–1513

    Article  CAS  Google Scholar 

  66. Khan GMA, Terano M, Alam MS (2013) J Polym Mater 30:10–15

    Google Scholar 

  67. O’Keefe BJ, Hillmyer MA (2001) J Chem Soc Dalton Trans 34:2215–2223

    Article  CAS  Google Scholar 

  68. Kowalski A, Libiszowski J, Duda A, Penzek S (2000) Macromolecules 33:1964–1976

    Article  CAS  Google Scholar 

  69. Duda A, Penczek S, Kowalski A, Libiszowski A (2002) J Macromol Symp 20:43–54

    Google Scholar 

  70. Hans R, Kricheldorf J (2001) J Chemosphere 43:49–62

    Article  Google Scholar 

  71. Kricheldorf H, Kreiser-Saunders S, Stricker RIA (2002) Macromolecules 3:702–714

    Google Scholar 

  72. Gregson CKA, Blackmore IJ, Gibson VC, Long NJ, Marshall EL (2006) White AJP Titanium–Dalton Trans 31:34–53

    Google Scholar 

  73. S. Shyamroy, PhD thesis. (2003) Pune University, India: NCL.

  74. Coullerez G, Lowe C, Pechy P, Henning HK, Hilborn J (2000) J Mater Sci: Mater Medi 11:505–518

    CAS  Google Scholar 

  75. Li BH, Yang MC (2006) Polym Adv Tech 17:439–452

    Article  CAS  Google Scholar 

  76. Villalobos MA, Awajulu T, Greeley G (2006) J Eng 31:3227–3239

    CAS  Google Scholar 

  77. Pilla S, Kim SD, Auer GK, Gong S, Park CB (2009) Polym Eng Sci 49:1653–1664

    Article  CAS  Google Scholar 

  78. Al-Itry R, Lamnawar BK, Maazouz A (2012) Polym Degr Stab 97:1898–1898

    Article  CAS  Google Scholar 

  79. Hiltunen K, Halrkolnen M, Jukka V, Valna T (1996) Macromolecules 29:8677–8687

    Article  CAS  Google Scholar 

  80. Abdelwahab A, Taylor S, Misra M (2015) Macromol. Mater Eng 300:299–312

    Article  CAS  Google Scholar 

  81. Dong W, Zou B, Yan Y, Pand M, Mingging J (2013) J Int J Mol Sci 14:20189–20199

    Article  CAS  Google Scholar 

  82. Volker F, Scherzer D, Villalobos M (2008) Multifunctional polymers as chain extenders and compatibilizers for polycondensates and biopolymers. ANTEC 1682:1–17

    Google Scholar 

  83. Najafi N, Heuzey MC, Carreau PJ, Paula M (2012) Polym Degra Stab 97:554–569

    Article  CAS  Google Scholar 

  84. Corre Y-M, Duchet J, Reignier J, Maazouz A (2011) Rheol Acta 50:613–628

    Article  CAS  Google Scholar 

  85. Fan W, Zhao Y, Zhang A, Liu Y, Cao Y, Chen J (2015) J. Appl. Polym Sci 9:41561–41572

    Google Scholar 

  86. Moon SI, Kimura Y (2003) Polym Int 52:299–314

    Article  CAS  Google Scholar 

  87. Rafier G, Lang J, Bechthhold M (2003) I U.S, Patent 657042.

  88. Kohn R, Pan Z, Sun J, Liang C (2003) Cat Communi 4:33–47

    Article  CAS  Google Scholar 

  89. Odian G (2004) Principles of polymerizations, 4th edn. John Wiley and Sons, New Jersey, pp. 47–58

    Book  Google Scholar 

  90. Stevens C (2004) Renewable bioresources: scope and modification for non-food applications. Wiley. p. 328.

  91. Jeong SI, Kyoung E, Yum J, Jung CH, Lee YM, Shin H (2008) Macromol Biosci 8:328–344

    Article  CAS  Google Scholar 

  92. Yoo DK, Kim D, Lee DS (2006) Macromole Res 14:510–523

    Article  CAS  Google Scholar 

  93. Lei J, Hailan W, Zhao Z, Liqun W (2014) J Appl Polym Sci 131:9–23

    Google Scholar 

  94. Lee MW, Tan TH, Chandrasekaran M (2005) Ooi. SIM Tech Techn Rep 6:40–59

    Google Scholar 

  95. Kaur S, Harjai K, Chhibber S (2014) Diagn Microbiol Infect Dis 79:387–392

    Article  CAS  Google Scholar 

  96. Denga A, Chena A, Wanga BS, Liua X, Chenga Z, Zhaoc DLJ (2013) Supercritical Fluids 77:110–126

    Article  CAS  Google Scholar 

  97. Ozkoc G, Kemaloglu S, Quaedflieg M (2010) Polym Compo 10:675–689

    Google Scholar 

  98. Tanpichi S, Woothanokkhan J (2014) J. Met Mat and Miner 24:55–73

    Google Scholar 

  99. Gay S, Arostegui J, Lemaitre J (2008) J Mat Sci & Eng: C 29:172–186

    Article  CAS  Google Scholar 

  100. Luo H, Xiong G, Li Q, Ma C, Zhu Y, Guo R (2014) Fib & Polym 15:259–273

    Google Scholar 

  101. Henriksen SS, Ding M, Vinther N, Theilgaard J, Overgaard S (2011) J Mater Sci Mater Med 22:1111–1129

    Article  CAS  Google Scholar 

  102. Agrawal C, Athanasiou KA (1997) Biomed Mater Res Appl Biomater 38:105–124

    Article  CAS  Google Scholar 

  103. Keki S, Bodnar I, Deak G, Zsuga M (2001) J Phys Chem B 105:2833–2847

    Article  CAS  Google Scholar 

  104. Hyon SH, Jamshidi K, Ikada Y (2007) J Biomat 18:1503–1518

    Article  Google Scholar 

  105. Pivsa-Art S, Tongngok T, Junngam S, Wongpajan R (2013) Eng Procedia 34:604–616

    Article  CAS  Google Scholar 

  106. Goepferich A (1996) J Polym Appl Sci 17:103–119

    CAS  Google Scholar 

  107. Ploypetcharaa N, Suppakula P, Atongc D, Pechyen C (2014) Ene Procedia 56:201–215

    Article  CAS  Google Scholar 

  108. Zhang C, Shai T, Turng L-S, Dan Y (2015) Ind Eng Chem Res 54:9505–9519

    Article  CAS  Google Scholar 

  109. Iqbal M, Xiaoxue S, Xu J (2009) J Mater Sci 44:5713–5727

    Article  CAS  Google Scholar 

  110. Ws P, DR S, BU VJ, Cran Y (1997) J Surg 2:87–101

    Google Scholar 

  111. Bendix D (2008) Polym Degrad Stab 59:129–146

    Article  Google Scholar 

  112. Kim J, Yeong S, Min Y, James J, Yoo J (2013) J Biomed Mater 28:14107–14119

    Article  CAS  Google Scholar 

  113. Ruan J, Zhou Z, Zou J (2007) J Polym-Plast Tech & Eng 46:1195–1217

    Article  CAS  Google Scholar 

  114. Wu W, Ding M (2004) Biomaterials 25:5830–5846

    Google Scholar 

  115. Ma PX, Biomim X, Mat X (2008) Tissue Eng Adv Dru Deli Rev 60:184–198

    Article  CAS  Google Scholar 

  116. Guo BL, Ma PX (2014) Sci China Chem 57:490–500

    Article  CAS  Google Scholar 

  117. Wei G, Jin Q, Giannobile WV, Ma PP (2007) Biomaterials 28:2087–2096

    Article  CAS  Google Scholar 

  118. Fang H-Y, Chia-Hung Y, Wen Chen Y, Ming-You S (2015) Mater 8:4299–4315

    Article  Google Scholar 

  119. Kulkarni RK, Pani KC, Leonard C (1966) Arch Surg 93:839–843

    Article  CAS  Google Scholar 

  120. Cutright DE, Hunsuc J, Beasley J (1971) J Oral Surg 29:393–397

    CAS  Google Scholar 

  121. Rajendra P, Sunil U, Suresh U, Jalinder T, Totrea Abraham T, Dombb J (2014) Rec Patents on Reg Medi 4:40–51

    Google Scholar 

  122. Iman M, Ali F, Hesham B, Sean D, Ali N, Fariba D (2016) Polym 8:2–32

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Agriculture and Agri-Food Canada, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Faculty of Engineering and Architectural Science at Ryerson University in Toronto, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Dahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalia, M.A., Dahman, Y. Biodegradable poly(lactic acid)-based scaffolds: synthesis and biomedical applications. J Polym Res 24, 74 (2017). https://doi.org/10.1007/s10965-017-1227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1227-2

Keywords

Navigation