Skip to main content
Log in

Optimization of Triacylglycerol-estolide Analysis by Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Acylglycerols containing more than three acyl groups (TAG-estolides) have been reported in plant seed oils and oil from ergot fungus. These TAG-estolides have considerable potential for industrial use, however, costs of producing synthetic TAG-estolides limits their use in large-scale applications. Identification and structural characterization of additional natural sources of TAG-estolides has been restricted by their complexity and limitations of current analytical techniques. In this work, detection and characterization of TAG-estolides was optimized for use with MALDI-TOF-MS. Eight commonly used matrices were compared; 2,5-dihydroxybenzoic acid (DHB) and 2,4,6-trihydroxyacetophenone (THAP) gave good quality mass spectra. Matrix additives were examined and lithium was the most suitable, since MS/MS spectra of lithiated TAG-estolides provided the most informative fragmentation using an optimized method. The matrix solution pH was examined, and for THAP, replacing LiCl with 10–40 mM LiOH resulted in a slightly basic pH and significantly more intense TAG-estolide signals (up to eightfold higher). Since DHB is acidic, a larger amount of LiOH (>150 mM) was required for the matrix solution to become basic, leading to ion suppression and reduced signal intensities. Thus, for TAG-estolide analysis, THAP with ~20 to 30 mM LiOH gives the highest quality spectra and the most informative MS/MS fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AG:

Acylglycerol(s)

CHCA:

α-Cyano-4-hydroxycinnamic acid

DHB:

2,5-Dihydroxybenzoic acid

ESI:

Electrospray ionization

FA:

Fatty acid(s)

O:

Oleic acid (octadec-9-cis-enoic acid, 18:1)

M:

Molecular ion

MALDI:

Matrix-assisted laser desorption/ionization-mass spectrometry

P:

Palmitic acid (hexadecanoic acid, 16:0)

R:

Ricinoleic acid (12-hydroxyoctadec-9-cis-enoic acid, 18:1-OH)

S/N:

Signal-to-noise ratio

TAG:

Triacylglycerol(s)

THAP:

2,4,6-Trihydroxyacetophenone

References

  1. Hayes DG, Kleiman R, Phillips BS (1995) The triglyceride composition, structure, and presence of estolides in the oils of Lesquerella and related species. J Am Oil Chem Soc 72:559–569

    Article  CAS  Google Scholar 

  2. Madrigal RV, Smith CR Jr (1982) Estolide triglycerides of Trewia nudiflora seed oil. Lipids 17:650–655

    Article  CAS  Google Scholar 

  3. Mikolajczak KL, Smith CR Jr, Wolff IA (1967) Glyceride structure of Cardamine impatiens L. seed oil. Lipids 3:215–220

    Article  Google Scholar 

  4. Morris LJ, Hall SW (1965) The structure of the glycerides of ergot oils. Lipids 1:188–196

    Article  Google Scholar 

  5. Batrakov SG, Tolkachev ON (1997) The structures of triacylglycerols from sclerotia of the rye ergot Claviceps purpurea (Fries) Tul. Chem Phys Lipids 86:1–12

    Article  CAS  Google Scholar 

  6. Isbell TA (2011) Chemistry and physical properties of estolides. Grasas Aceites 62:8–20

    Article  CAS  Google Scholar 

  7. Cermak SC, Isbell TA (2003) Synthesis and physical properties of estolide-based functional fluids. Ind Crop Prod. 18:183–196

    Article  CAS  Google Scholar 

  8. Cermak S, Isbell T (2004) Estolides-the next biobased functional fluid. Inform 15:515–517

    Google Scholar 

  9. Hayes DG, Kleiman R, Weisleder D, Adlof RO, Cuperus FP, Derksen JTP (1995) Occurrence of estolides in processed Dimorphotheca pluvialis seed oil. Ind Crop Prod 4:295–301

    Article  CAS  Google Scholar 

  10. Aitzetmuller K, Xin Y, Werner G, Gronheim M (1992) High-performance liquid chromatographic investigations of stillingia oil. J Chromatogr 603:165–173

    Article  CAS  Google Scholar 

  11. Sprecher HW, Maier R, Barber M, Holman RT (1965) Structure of an optically active allene-containing tetraester triglyceride isolated from the seed oil of Sapium sebiferum. Biochemistry 13:1856–1863

    Google Scholar 

  12. Řezanka T, Sigler K (2007) The use of atmospheric pressure chemical ionization mass spectrometry with high performance liquid chromatography and other separation techniques for identification of triacylglycerols. Curr Anal Chem 3:252–271

    Article  Google Scholar 

  13. Lin J-T, Arcinas A, Harden LR, Kfgerquist CK (2006) Identification of (12-ricinoleoylricinoleoyl)diricinoleoylglycerol, an acylglycerol containing four acyl chains, in castor (Ricinus communis L.) oil by LC-ESI-MS. J Agric Food Chem 54:3498–3504

    Article  CAS  Google Scholar 

  14. Zhang H, Olson DJH, Van D, Purves RW, Smith MA (2012) Rapid identification of triacylglycerol-estolides in plant and fungal oils. Ind Crop Prod 37:186–194

    Article  CAS  Google Scholar 

  15. Smith MA, Zhang H, Forseille L, Purves RW (2013) Characterization of novel triacylglycerol estolides from the seed oil of Mallotus philippensis and Trewia nudiflora. Lipids 48:75–85

    Article  CAS  Google Scholar 

  16. Cozzolino R, De Giulio B (2011) Application of ESI and MALDI-TOF MS for triacylglycerols analysis in edible oils. Eur J Lipid Sci Technol 113:160–167

    Article  CAS  Google Scholar 

  17. Schiller J, Süß R, Arnhold J, Fuchs B, Leßig J, Muller M et al (2004) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43:449–488

    Article  CAS  Google Scholar 

  18. Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–178

    Article  CAS  Google Scholar 

  19. Asbury GR, Al-Saad K, Siems WF (1999) Analysis of triacylglycerols and whole oils by matrix-assisted laser desorption/ionization time of flight mass spectrometry. J Am Soc Mass Spectrom 10:983–991

    Article  CAS  Google Scholar 

  20. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm R et al (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci USA 106:2136–2141

    Article  CAS  Google Scholar 

  21. Islam MN, Chambers JP, Ng CK-Y (2012) Lipid profiling of the model temperate grass, Brachypodium distachyon. Metabolomics 8:598–613

    Article  Google Scholar 

  22. Ivanova PT, Milne SB, Byrne MO, Xiang Y, Brown HA (2007) Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry. Method Enzymol 432:21–57

    CAS  Google Scholar 

  23. Ayorinde FO, Elhilo E, Hlongwane C (1999) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of canola, castor and olive oils. Rapid Commun Mass Spectrom 13:737–739

    Article  CAS  Google Scholar 

  24. Ayorinde FO, Eribo BE, Balan KV, Johnson JHJ, Wan LW (1999) Determination of major triacylglycerol components of polyunsaturated specialty oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 13:937–942

    Article  CAS  Google Scholar 

  25. Picariello G, Paduano A, Sacchi R, Addeo F (2009) MALDI-TOF mass spectrometry profiling of polar and nonpolar fractions in heated vegetable oils. J Agric Food Chem 57:5391–5400

    Article  CAS  Google Scholar 

  26. Lay JO Jr, Liyanage R, Durham B, Brooks J (2006) Rapid characterization of edible oils by direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis using triacylglycerols. Rapid Commun Mass Spectrom 20:952–958

    Article  CAS  Google Scholar 

  27. Gidden J, Liyanage R, Durham B, Lay JO Jr (2007) Reducing fragmentation observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of triacylglycerols in vegetable oils. Rapid Commun Mass Spectrom 21:1951–1957

    Article  CAS  Google Scholar 

  28. Black C, Poile C, Langley J, Herniman J (2006) The use of pencil lead as a matrix and calibrant for matrix-assisted laser desorption/ionization. Rapid Commun Mass Spectrom 20:1053–1060

    Article  CAS  Google Scholar 

  29. Langley JG, Herniman JM, Townell MS (2007) 2B or not 2B, that is the question: further investigations into the use of pencil as a matrix for matrix-assisted laser desorption/ionization. Rapid Commun Mass Spectrom 21:180–190

    Article  CAS  Google Scholar 

  30. Olson DJH, Smith MA, Dauk M, Reed DW, Abrams SR (2008) Negative ion pencil lead MALDI and MALDI MS/MS for the identification and structural analysis of free fatty acids. In: 56th ASMS conference on mass spectrometry and allied topics, Denver

  31. Olson DJH, Giblin ME, Taylor DC, Ross ARS (2007) Enhanced production of cationized molecular ions by MALDI and structural elucidation of triacylglycerols by PSD using a graphite matrix. In: 55th ASMS conference on mass spectrometry and allied topics, Indianapolis

  32. Pittenauer E, Allmaier G (2009) The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols. J Am Soc Mass Spectrom 20:1037–1047

    Article  CAS  Google Scholar 

  33. Cerruti CD, Touboul D, Guerineau V, Petit VW, Laprevote O, Brunelle A (2011) MALDI imaging mass spectrometry of lipids by adding lithium salts to the matrix solution. Anal Bioanal Chem 401:75–87

    Article  CAS  Google Scholar 

  34. Cheng C, Gross ML (1998) Complete structural elucidation of triacylglycerols by tandem sector mass spectrometry. Anal Chem 70:4417–4426

    Article  CAS  Google Scholar 

  35. Hsu F–F, Turk J (2010) Electrospray ionization multiple-stage linear ion-trap mass spectrometry for structural elucidation of triacylglycerols: assignment of fatty acyl groups on the glycerol backbone and location of double bonds. J Am Soc Mass Spectrom 21:657–669

    Article  CAS  Google Scholar 

  36. Siuzdak G (1996) Mass spectrometry for biotechnology. Academic Press, San Diego, pp 18–19

    Google Scholar 

  37. Al-Saad K, Zabrouskov V, Siems WF, Knowles NR, Hannan RM, Hill HH Jr (2003) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of lipids: ionization and prompt fragmentation patterns. Rapid Commun Mass Spectrom 17:87–96

    Article  CAS  Google Scholar 

  38. Keller BO, Li L (2000) Discerning matrix-cluster peaks in matrix-assisted laser desorption/ionization time-of-flight mass spectra of dilute peptide mixtures. J Am Soc Mass Spectrom 11:88–93

    Article  CAS  Google Scholar 

  39. Stübiger G, Belgacem O (2007) Analysis of lipids using 2,4,6-trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Anal Chem 79:3206–3213

    Article  Google Scholar 

  40. Nagai T, Mozobe H, Otake I, Ichioka K, Kojima K, Matsumoto Y, Gotoh N, Kuroda I, Wada S (2011) Enantiomeric separation of asymmetric triacylglycerol by recycle high-performance liquid chromatography with chiral column. J Chromatogr A 1218:2880–2886

    Article  CAS  Google Scholar 

  41. Picariello G, Romano R, Addeo F (2010) Nitrocellulose film substrate minimizes fragmentation in matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of triacylglycerols. Anal Chem 82:5783–5791

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the technical support from Stephen Ambrose and Doug Olson. Thanks also to Dr. Patrick Covello and Dr. Jonathan Page for their internal review of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11746_2014_2437_MOESM1_ESM.jpg

Supplementary material 1 Figure S1 MALDI-MS spectra of ergot TAG-estolides from a DHB matrix in the presence of: (a) 0.1 % TFA, and (b) 10 mM LiOH. (JPEG 208 kb)

About this article

Cite this article

Zhang, H., Smith, M.A. & Purves, R.W. Optimization of Triacylglycerol-estolide Analysis by Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry. J Am Oil Chem Soc 91, 905–915 (2014). https://doi.org/10.1007/s11746-014-2437-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-014-2437-y

Keywords

Navigation