Skip to main content
Log in

A pathway for biosynthesis of divinyl ether fatty acids in green leaves

  • Article
  • Published:
Lipids

Abstract

[1-14C]α-Linolenic acid was incubated with a particulate fraction of homogenate of leaves of the meadow buttercup (Ranunculus acris L.). The main product was a divinyl ether fatty acid, which was identified as 12-[1′(Z),3′(Z)-hexadienyloxy]-9(Z), 11(E)-dodecadienoic acid. Addition of glutathione peroxidase and reduced glutathione to incubations of α-linolenic acid almost completely suppressed formation of the divinyl ether acid and resulted in the appearance of 13(S)-hydroxy-9(Z), 11(E), 15(Z)-octadecatrienoic acid as the main product. This result, together with the finding that 13(S)-hydroperoxy-9(Z), 11(E), 15(Z)-octadecatrienoic acid served as an efficient precursor of the divinyl ether fatty acid, indicated that divinyl ether biosynthesis in leaves of R. acris occurred by a two-step pathway involving an ω6-lipoxygenase and a divinyl ether synthase. Incubations of isomeric hydroperoxides derived from α-linolenic and linoleic acids with the enzyme preparation from R. acris showed that 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoic acid was transformed into the divinyl ether 12-[1′(Z)-hexenyloxy]-9(Z), 11(E)-dodecadienoic acid. In contrast, neither the 9(S)-hydroperoxides of linoleic or α-linolenic acids nor the 13(R)-hydroperoxide of α-linolenic acid served as precursors of divinyl ethers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

9-H(P)OD:

9-hydro(pero)xy-10(E), 12(Z)-octadecadienoic acid

9-H(P)OT:

9-hydro(pero)xy-10(E), 12(Z), 15(Z)-octadecatrienoic acid

12-oxo-PDA:

12-oxo-10,15(Z)-phytodienoic acid

13-H(P)OD:

13-hydro(pero)xy-9(Z), 11(E)-octadecadienoic acid

13-H(P)OT:

13-hydro(pero)xy-9(Z), 11(E), 15(Z)-octadecatrienoic acid

colneleic acid:

9-[1′(E),3′(Z)-nonadienyloxy]-8(E)-nonenoic acid

colnelenic acid:

9-[1′(E),3′(Z),6′(Z)-nonatrienyloxy]-8(E)-nonenoic acid

etheroleic acid:

12-[1′(E)-hexenyloxy]-9(Z),11(E)-dodecadienoic acid

etherolenic acid:

12-[1′(E),3′(Z)-hexadienyloxy]-9(Z),11(E)-dodecadienoic acid

FT-IR:

Fourier transform infrared

GC-MS:

gas chromatography-mass spectrometry

GLC:

gas-liquid chromatography

GSH:

glutathione (reduced form)

GSH-px:

glutathione peroxidase

NMR:

nuclear magnetic resonance

RP-HPLC:

reversed-phase high-performance liquid chromatography

SP-HPLC:

straightphase high-performance liquid chromatography

SPE:

solid-phase extraction

UV:

ultraviolet

References

  1. Hamberg, M., and Gardner, H.W. (1992) Oxylipin Pathway to Jasmonates: Biochemistry and Biological Significance, Biochim. Biophys. Acta 1165, 1–18.

    PubMed  CAS  Google Scholar 

  2. Mueller, M.J. (1997) Enzymes Involved in Jasmonic Acid Biosynthesis, Physiol. Plant. 100, 653–663.

    Article  CAS  Google Scholar 

  3. Farmer, E.E., and Ryan, C.A. (1990) Interplant Communication: Airborne Methyl Jasmonate Induces Synthesis of Proteinase Inhibitors in Plant Leaves, Proc. Natl. Acad. Sci. USA 87, 7713–7716.

    Article  PubMed  CAS  Google Scholar 

  4. Weiler, E.W., Albrecht, T., Groth, B., Xia, Z.-Q., Luxem, M., Liss, H., Andert, L., and Spengler, P. (1993) Evidence for the Involvement of Jasmonates and Their Octadecanoid Precursors in the Tendril Coiling Response of Bryonia dioica, Phytochemistry 32, 591–600.

    Article  CAS  Google Scholar 

  5. McConn, M., and Browse, J. (1996) The Critical Requirement for Linolenic Acid Is Pollen Development, not Photosynthesis, in an Arabidopsis Mutant, Plant Cell 8, 403–416.

    Article  PubMed  CAS  Google Scholar 

  6. Hamberg, M., and Hamberg, G. (1990) Hydroperoxide-Dependent Epoxidation of Unsaturated Fatty Acids in the Broad Bean (Vicia faba L.), Arch. Biochem. Biophys. 283, 409–416.

    Article  PubMed  CAS  Google Scholar 

  7. Blée, E., and Schuber, F. (1990) Efficient Epoxidation of Unsaturated Fatty Acids by a Hydroperoxide-Dependent Oxygenase, J. Biol. Chem. 265, 12887–12894.

    PubMed  Google Scholar 

  8. Hatanaka, A. (1993) The Biogeneration of Green Odour by Green Leaves, Phytochemistry 34, 1201–1218.

    Article  CAS  Google Scholar 

  9. Galliard, T., and Phillips, D.R. (1972) The Enzymic Conversion of Linoleic Acid into 9-(Nona-1′, 3′-dienoxy)non-8-enoic Acid, a Novel Unsaturated Ether Derivative Isolated from Homogenates of Solanum tuberosum Tubers, Biochem. J. 129, 743–753.

    PubMed  CAS  Google Scholar 

  10. Caldelari, D., and Farmer, E.E. (1998) A Rapid Assay for the Coupled Cell Free Generation of Oxylipins, Phytochemistry 47, 599–604.

    Article  CAS  Google Scholar 

  11. Grechkin, A.N., Fazliev, F.N., and Mukhtarova, L.S. (1997) The Lipoxygenase Pathway in Garlic (Allium sativum L.) Bulbs: Detection of the Novel Divinyl Ether Oxylipins, FEBS Lett. 371, 159–162.

    Article  Google Scholar 

  12. Proteau, P.J., and Gerwick, W.H. (1993) Divinyl Ethers and Hydroxy Fatty Acids from Three Species of Laminaria (Brown Algae), Lipids 28, 783–787.

    PubMed  CAS  Google Scholar 

  13. Jiang, Z.-D., and Gerwick, W.H. (1997) Novel Oxylipins from the Temperate Red Alga Polyneura latissima: Evidence for an Arachidonate 9(S)-Lipoxygenase, Lipids 32, 231–235.

    Article  PubMed  CAS  Google Scholar 

  14. Blée, E., and Joyard, J. (1996) Envelope Membranes from Spinach Chloroplasts Are a Site of Metabolism of Fatty Acid Hydroperoxides, Plant Physiol. 110, 445–454.

    PubMed  Google Scholar 

  15. Corey, E.J., Nagata, R., and Wright, S.W. (1987) Biomimetic Synthesis of Colneleic Acid and Its Function as a Lipoxygenase Inhibitor, Tetrahedron Lett. 28, 4917–4920.

    Article  CAS  Google Scholar 

  16. Matthew, J.A., Chan, H.W.-S., and Galliard, T. (1977) A Simple Method for the Preparation of Pure 9-d-Hydroperoxide of Linoleic Acid and Methyl Linoleate Based on the Positional Specificity of Lipoxygenase in Tomato Fruit, Lipids 12, 324–326.

    PubMed  CAS  Google Scholar 

  17. Hamberg, M., and Gotthammar, B. (1973) A New Reaction of Unsaturated Fatty Acid Hydroperoxides: Formation of 11-Hydroxy-12,13-epoxy-9-octadecenoic Acid from 13-Hydroperoxy-9,11-octadecadienoic Acid, Lipids 8, 737–744.

    CAS  Google Scholar 

  18. Hamberg, M., Su, C., and Oliw, E. (1998) Manganese Lipoxygenase: Discovery of a Bis-Allylic Hydroperoxide as Product and Intermediate in a Lipoxygenase Reaction, J. Biol. Chem. 273, 13080–13088.

    Article  PubMed  CAS  Google Scholar 

  19. Hamberg, M., and Hughes, M.A. (1988) Fatty Acid Allene Oxides. III. Albumin-induced Cyclization of 12,13(S)-Epoxy-9 (Z),11-octadecadienoic Acid, Lipids 23, 469–475.

    CAS  Google Scholar 

  20. Fahlstadius, P., and Hamberg, M. (1990) Stereospecific Removal of the pro-R Hydrogen at C-8 of (9S)-Hydroperoxyoctadecadienoic Acid in the Biosynthesis of Colneleic Acid, J. Chem. Soc. Perkin Trans. 1, 2027–2030.

    Article  Google Scholar 

  21. Grechkin, A.N., Ilyasov, A.V., and Hamberg, M. (1997) On the Mechanism of Biosynthesis of Divinyl Ether Oxylipins by Enzyme from Garlic Bulbs, Eur. J. Biochem. 245, 137–142.

    Article  PubMed  CAS  Google Scholar 

  22. Hamberg, M. (1971) Steric Analysis of Hydroperoxides Formed by Lipoxygenase Oxygenation of Linoleic Acid, Anal. Biochem. 43, 515–526.

    Article  PubMed  CAS  Google Scholar 

  23. Hamberg, M. (1968) Metabolism of Prostaglandins in Rat Liver Mitochondria, Eur. J. Biochem. 6, 135–146.

    Article  PubMed  CAS  Google Scholar 

  24. Mueller, M.J., and Brodschelm, W. (1994) Quantification of Jasmonic Acid by Capillary Gas Chromatography-Negative Chemical Ionization-Mass Spectrometry, Anal. Biochem. 218, 425–435.

    Article  PubMed  CAS  Google Scholar 

  25. Galliard, T., Phillips, D.R., and Frost, D.J. (1973) Novel Divinyl Ether Fatty Acids in Extracts of Solanum tuberosum, Chem. Phys. Lipids 11, 173–180.

    Article  CAS  Google Scholar 

  26. The Sadtler Standard Spectra, Vol. 12, Sadtler Research Laboratories, Philadelphia, 1969, Spectrum #7748.

  27. Weiler, E.W. (1997) Octadecanoid-Mediated Signal Transduction in Higher Plants, Naturwissenschaften 84, 340–349.

    Article  CAS  Google Scholar 

  28. Creelman, R.A., and Mullet, J.E. (1997) Biosynthesis of Action of Jasmonates in Plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 355–381.

    Article  PubMed  CAS  Google Scholar 

  29. Crombie, L., Morgan, D.O., and Smith, E.H. (1991) An Isotopic Study (2H and 18O) of the Enzymic Conversion of Linoleic Acid into Colneleic Acid with Carbon Chain Fracture: the Origin of Shorter Chain Aldehydes, J. Chem. Soc. Perkin Trans. 1, 567–575.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hamberg, M. A pathway for biosynthesis of divinyl ether fatty acids in green leaves. Lipids 33, 1061–1071 (1998). https://doi.org/10.1007/s11745-998-0306-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0306-7

Keywords

Navigation