Skip to main content
Log in

Effects of polyunsaturated fatty acids and their n-6 hydroperoxides on growth of five malignant cell lines and the significance of culture media

  • Published:
Lipids

Abstract

We examined effects of polyunsaturated fatty acids (PUFA), their corresponding hydroperoxy fatty acids (hp-PUFA), as well as various pro- and antioxidants on the growth of tumor cells in culture. When cultured in RPMI 1640 medium, A-427 and WEHI clone 13 cells were both highly sensitive to hydroperoxy docosahexaenoic acid (hp-DHA), but they were far less sensitive in minimum essential medium (MEM). In contrast, A-427 cells were also sensitive to DHA in both culture media, while WEHI clone 13 cells, as well as other cell lines, tested in their respective media, were resistant. The lower sensitivity of the cell lines to hp-DHA in MEM-medium was apparently due to a more rapid reduction of hp-DHA to the corre-sponding hydroxy-DHA in MEM-medium. Addition of glutathione (GSH) to the culture medium abolished the effects of hp-DHA, but not the effects of DHA, while depletion of intracellular GSH levels by L-buthionine-S,R-sulfoximine strongly enhanced the cytotoxic effect of hp-DHA, but not the cytotoxic effect of DHA. α-Tocopherol protected A-427 cells against the toxic effect of DHA and abolished the induced lipid peroxidation, while it did not protect against the toxic effects of hp-DHA in A-427 or WEHI clone 13 cells. Ascorbic acid reduced the cytotoxic effect of DHA, but potentiated the toxic effect of hp-DHA while selenite essentially abolished the toxicity of both DHA and hp-DHA. These results indicate that sensitivity of tumor cell lines to PUFA and their oxidation products depends on their antioxidant defense mechanisms, as well as culture conditions, and establishes hp-DHA as a major, but probably not the sole, metabolite responsible for cytotoxicity of DHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid (20:4n-6)

ANOVA:

analysis of variance

BHA:

butylated hydroxyanisole

BHT:

butylated hydroxytoluene

BSO:

L-buthionine-S,R-sulfoximine

DEM:

diethyl maleate

DHA:

docosahexaenoic acid (22:6n-3)

EPA:

eicosapentaenoic acid (20:5n-3)

FBS:

fetalbovine serum

FCS:

fetal calf serum

GSH:

glutathione

hp:

n-6-hydroperoxy-

HPLC:

high-performance liquid chromatography

LA:

linoleic acid (18:2n-6)

α-LNA:

α-linolenic acid (18:3n-3)

ψ-LNA:

ψ-linolenic acid (18:3n-6)

MDA:

malondialdehyde

MEM:

minimum essential medium

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PUFA:

polyunsaturated fatty acids

TBA:

thiobarbituric acid

TBARS:

thiobarbituric acid-reactive substances

References

  1. Reddy, B.S., Burill, C., and Rigotty, J. (1991) Effects of Diets High in ω-3 and ω-6 Fatty Acids on Initiation and Postinitiation Stages of Colon Carcinogenesis, Cancer Res. 51, 487–491.

    PubMed  CAS  Google Scholar 

  2. O'Connor, T.P., Roebuck, B.D., Peterson, F.J., Lokesh, B., Kinsella, J.E., and Campbell, T.C. (1989) Effect of Dietary Omega-3 and Omega-6 Fatty Acids on Development of Azaserine-Induced Preneoplastic Lesions in Rat Pancreas, J. Natl. Cancer Inst. 81, 858–863.

    PubMed  Google Scholar 

  3. Reich, R., Royce, L., and Martin, G.R. (1989) Eicosapentaenoic Acid Reduces the Invasive and Metastatic Activities of Malignant Tumor Cells, Biochem. Biophys. Res. Comm. 160, 559–564.

    Article  PubMed  CAS  Google Scholar 

  4. Begin, M.E., Ells, G., Das, U.N., and Horrobin, D.F. (1986) Differential Killing of Human Carcinoma Cells Supplemented with n-3 and n-6 Polyunsaturated Fatty Acids, J. Natl. Cancer Inst. 77, 1053–1062.

    PubMed  CAS  Google Scholar 

  5. Das, U.N. (1991) Tumoricidal Action of cis-Unsaturated Fatty Acids and Their Relationship to Free Radicals and Lipid Peroxidation. Cancer Lett. 56, 235–243.

    Article  PubMed  CAS  Google Scholar 

  6. Chajès, V., Sattler, W., Stranzl, A., and Kostner, G.M. (1995) Influence of n-3 Fatty Acids on the Growth of Human Breast Cancer Cells in vitro: Relationship to Peroxides and Vitamin-E, Breast Cancer Res. Treat. 34, 199–212.

    Article  PubMed  Google Scholar 

  7. Sumida, C., Graber, R., and Nunez, E. (1993) Role of Fatty Acids in Signal Transduction: Modulators and Messengers, Prostaglandins, Leukotrienes Essent. Fatty Acids 48, 117–122.

    Article  CAS  Google Scholar 

  8. Tiwari, R.K., Mukhopadhyay, B., Telang, N.T., and Osborne, M.P. (1991) Modulation of Gene Expression by Selected Fatty Acids in Human Breast Cancer Cells, Anticancer Res. 11, 1383–1388.

    PubMed  CAS  Google Scholar 

  9. Matsumoto, K., Morita, I., Hibino, H., and Murota, S. (1993) Inhibitory Effect of Docosahexaenoic Acid-Containing Phospholipids on 5-Lipoxygenase in Rat Basophilic Leukemia Cells, Prostaglandins, Leukotrienes Essent. Fatty Acids, 49, 861–866.

    Article  CAS  Google Scholar 

  10. Awad, A.B., Ferger, S.L., and Fink, C.S. (1990) Effect of Dietary Fat on the Lipid Composition and Utilization of Short-Chain Fatty Acids by Rat Colonocytes, Lipids 25, 316–320.

    PubMed  CAS  Google Scholar 

  11. Fischer, S., Vischer, A., Preac-Mursic, V., and Weber, P.C. (1987) Dietary Docosahexaenoic Acid Is Retroconverted in Man to Eicosapentaenoic Acid, Which Can Be Quickly Transformed to Prostaglandin I3. Prostaglandins 34, 367–375.

    Article  PubMed  CAS  Google Scholar 

  12. Corey, E.J., Shih, C., and Cashman, J.R. (1983) Docosahexaenoic Acid Is a Strong Inhibitor of Prostaglandin But Not Leukotriene Biosynthesis, Proc. Natl. Acad. Sci. USA 80, 3581–3584.

    Article  PubMed  CAS  Google Scholar 

  13. Gonzalez, M.J., Schemmel, R.A., Dugan, L., Jr., Gray, J.I., and Welsch, C.W. (1993) Dietary Fish Oil Inhibits Human Breast Carcinoma Growth: A Function of Increased Lipid Peroxidation, Lipids 28, 827–832.

    PubMed  CAS  Google Scholar 

  14. Cheeseman, K.H., Emery, S., Maddix, S.P., Slater, T.F., Burton, G.W., and Ingold, K.U. (1988) Studies on Lipid Peroxidation in Normal and Tumour Tissues, Biochem. J. 250, 247–252.

    PubMed  CAS  Google Scholar 

  15. Sagar, P.S., Das, U.N., Koratkar, R., Ramesh, G., Padma, M., and Kumar, G.S. (1992) Cytotoxic Action of cis-Unsaturated Fatty Acids on Human Cervical Carcinoma (HeLa) Cells: Relationship to Free Radicals and Lipid Peroxidation and Its Modulation by Calmodulin Antagonists, Cancer Lett. 63, 189–198.

    Article  PubMed  CAS  Google Scholar 

  16. Burns, C.P., and Wagner, B.A. (1991) Heightened Susceptibility of Fish Oil Polyunsaturate-Enriched Neoplastic Cells to Ethane Generation During Lipid Peroxidation, J. Lipid Res. 32, 79–87.

    PubMed  CAS  Google Scholar 

  17. Kumar, K., Thangaraju, M., and Sachdanandam, P. (1991) Changes Observed in Antioxidant System in the Blood of Postmenopausal Women with Breast Cancer, Biochem. Int. 25, 371–380.

    PubMed  CAS  Google Scholar 

  18. Corrocher, R., Casaril, M., Bellisola, G., Gabrielli, G.B., Nicoli, N., Guidi, G.C., and De Sandre, G. (1986) Severe Impairment of antioxidant System in Human Hepatoma, Cancer 58, 1658–1662.

    Article  PubMed  CAS  Google Scholar 

  19. Schønberg, S.A., Rudra, P.K., Nøding, R., Skorpen, F., Bjerve, K.S., and Krokan, H.E. (1997) Evidence That Changes in Se-Glutathione Peroxidase Levels Affect the Sensitivity of Human Tumor Cell Lines to n-3 Fatty Acids, Carcinogenesis 18, 1897–1904.

    Article  PubMed  Google Scholar 

  20. Esterbauer, H. (1993) Cytotoxicity and Genotoxicity of Lipid-Oxidation Products, Am. J. Clin. Nutr. 57 (suppl.), 779S-786S.

    PubMed  CAS  Google Scholar 

  21. Kumar, Y.V.K., Raghunathan, A., Sailesh, S., Prasad, M., Vemuri, M.C., and Reddanna, P. (1993) Differential Effects of 15-HPETE and 15-HETE on BHK-21 Cell Proliferation and Macromolecular Composition, Biochim. Biophys. Acta 1167, 102–108.

    CAS  Google Scholar 

  22. Sandstrom, P.A., Tebbey, P.A., Van Cleave, S., and Buttke, T.M. (1994) Lipid Hydroperoxides Induce Apoptosis in T Cells Displaying a HIV-Associated Glutathione Peroxidase Deficiency, J. Biol. Chem. 269, 798–801.

    PubMed  CAS  Google Scholar 

  23. Ochi, H., Morita, I., and Murota, S. (1992) Mechanism for Endothelial Cell Injury Induced by 15-Hydroperoxyeicosate-traenoic Acid, An Arachidonate Lipoxygenase Product, Biochim. Biophys. Acta 1136, 247–252.

    Article  PubMed  CAS  Google Scholar 

  24. Najid, A., Beneytout, J.-L., and Tixier, M. (1989) Cytotoxicity of Arachidonic Acid and of Its Lipoxygenase Metabolite 15-Hydroperoxyeicosatetraenoic Acid on Human Breast Cancer MCF-7 Cells in Culture, Cancer Lett. 46, 137–141.

    Article  PubMed  CAS  Google Scholar 

  25. Michiels, C., and Remacle, J. (1991) Cytotoxicity of Linoleic Acid Peroxide, Malondialdehyde and 4-Hydroxyonenal Towards Human Fibroblasts, Toxicology 66, 225–234.

    Article  PubMed  CAS  Google Scholar 

  26. Kaneko, T., Nakano, S., and Matsuo, M. (1991) Protective Effect of Vitamin E on Linoleic Acid Hydroperoxide-Induced Injury to Human Endothelial Cells, Lipids 26, 345–348.

    PubMed  CAS  Google Scholar 

  27. Nøding, R., Brekke, O.-L., and Bjerve, K.S. (1997) Specificity of Hydroperoxy Fatty Acid Inhibition of Cell Growth and the Lack of Effect on Tumor Necrosis Factor-Induced Cytotoxicity in WEHI Clone 13 Cells, Biochim. Biophys. Acta 1347, 82–92.

    PubMed  Google Scholar 

  28. Espevik, T., and Nissen-Meyer, J. (1986) A Highly Sensitive Cell Line, WEHI 164 Clone 13, for Measuring Cytotoxic Factor/Tumor Necrosis Factor from Human Monocytes, J. Immunol. Methods 95, 99–105.

    Article  PubMed  CAS  Google Scholar 

  29. Brekke, O.-L., Shalaby, M.R., Sundan, A., Espevik, T., and Bjerve, K.S. (1992) Butylated Hydroxyanisole Specifically Inhibits Tumor Necrosis Factor-Induced Cytotoxicity and Growth Enhancement, Cytokine 4, 269–280.

    Article  PubMed  CAS  Google Scholar 

  30. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  31. Gavino, V.C., Miller, J.S., Ikharebha, S.O., Milo, G.E., and Cornwell, D.G. (1981) Effect of Polyunsaturated Fatty Acids and Antioxidants on Lipid Peroxidation in Tissue Cultures, J. Lipid Res. 22, 763–769.

    PubMed  CAS  Google Scholar 

  32. Schønberg, S., and Krokan, H.E. (1995) Conjugated Dienoic Derivatives (CLA) of Linoleic Acid on the Growth of Human Tumor Cell Lines Is in Part Due to Increased Lipid Peroxidation, Anticancer Res. 15, 1241–1246.

    PubMed  Google Scholar 

  33. Griffith, O.W. (1980) Determination of Glutathione and Glutathione Disulfide Using Glutathione Reductase and 2-Vinylpyridine, Anal. Biochem. 106, 207–212.

    Article  PubMed  CAS  Google Scholar 

  34. Sierra-Rivera, E., Meredith, M.J., Summar, M.L., Smith, M.D., Voorhees, G.J., Stoffel, C.M., and Freeman, M.L. (1994) Genes Regulating Glutathione Concentrations in X-ray Transformed Rat Embryo Fibroblasts: Changes in ψ-Glutamylcysteine Synthetase and ψ-Glutamyltranspeptidase Expression, Carcinogenesis 15, 1301–1307.

    PubMed  CAS  Google Scholar 

  35. Mæhle, L., Eilertsen, E., Mollerup, S., Schønberg, S., Krokan, H.E., and Haugen, Aa. (1995) Effects of n-3 Fatty Acids During Neoplastic Progression and Comparison of in vitro and in vivo Sensitivity of Two Human Tumour Cell Lines, Br. J. Cancer 71, 691–696.

    PubMed  Google Scholar 

  36. Begin, M.e., Ells, G., and Horrobin, D.F. (1988) Polyunsaturated Fatty Acid-Induced Cytotoxicity Against Tumour Cells and Its Relationship to Lipid Peroxidation, J. Natl. Cancer Inst. 80, 188–194.

    PubMed  CAS  Google Scholar 

  37. Niki, E. (1987) Antioxidants in Relation to Lipid Peroxidation, Chem. Phys. Lipids 44, 227–253.

    Article  PubMed  CAS  Google Scholar 

  38. Flohè, L. (1985) The Glutathione Peroxidase Reaction: Molecular Basis of the Antioxidant Function of Selenium in Mammals, Curr. Top. Cell. Regul. 27, 473–478.

    PubMed  Google Scholar 

  39. Tisdale, M.J., and Mahmoud, M.B. (1983) Activities of Free Radical Metabolizing Enzymes in Tumours, Br. J. Cancer 47, 809–812.

    PubMed  CAS  Google Scholar 

  40. Cheeseman, K.H., Collins, M., Proudfoot, K., Slater, T.F., Burton, G.W., Webb, A.C., and Ingold, K.U. (1986) Studies on Lipid Peroxidation in Normal and Tumour Tissues. The Navikoff Rat Liver Tumour, Biochem. J. 235, 507–514.

    PubMed  CAS  Google Scholar 

  41. Ochi, H., Morita, I., and Murota, S. (1992) Roles of Glutathione and Glutathione Peroxidase in the Protection Against Endothelial Cell Injury Induced by 15-Hydroperoxyeicosatetraenoic Acid, Arch. Biochem. Biophys. 294, 407–411.

    Article  PubMed  CAS  Google Scholar 

  42. Leist, M., Raab, B., Maurer, S., Rösick, U., and Brigelius-Flohé, R. (1996) Conventional Cell Culture Media Do Not Adequately Supply Cells with Antioxidants and Thus Facilitate Peroxide-Induced Genotoxicity, Free Radical Biol. Med., 21, 297–306.

    Article  CAS  Google Scholar 

  43. Baker, R.D., Baker, S.S., LaRosa, K., Whitney, C., and Newburger, P.E. (1993) Selenium Regulation of Glutathione Peroxidase in Human Hepatoma Cell Line Hep3B, Arch. Biochem. Biophys. 304, 53–55.

    Article  PubMed  CAS  Google Scholar 

  44. Vatten, L.J., Bjerve, K.S., Andersen, A., and Jellum, E. (1993) Polyunsaturated Fatty Acids in Serum Phospholipids and Risk of Breast Cancer: A Case-Control Study from the Janus Serum Bank in Norway, Eur. J. Cancer 29A, 532–538.

    Article  PubMed  CAS  Google Scholar 

  45. Hursting, S.D., Thornquist, M., and Henderson, M.M. (1990) Types of Dietary Fat and the Incidence of Cancer at 5 Sites, Prev. Med. 19, 242–253.

    Article  PubMed  CAS  Google Scholar 

  46. World Cancer Research Fund (1997) Food, Nutrition and the Prevention of Cancer: A Global Perspective, The American Institute for Cancer Research, Washington, D.C., p. 269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian S. Bjerve.

About this article

Cite this article

Nøding, R., Schønberg, S.A., Krokan, H.E. et al. Effects of polyunsaturated fatty acids and their n-6 hydroperoxides on growth of five malignant cell lines and the significance of culture media. Lipids 33, 285–293 (1998). https://doi.org/10.1007/s11745-998-0207-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0207-9

Keywords

Navigation