Skip to main content
Log in

Polyunsaturated fatty acids increase the sensitivity of 36B10 rat astrocytoma cells to radiation-induced cell kill

  • Published:
Lipids

Abstract

Polyunsaturated fatty acids (PUFA) such as γ-linolenic acid (GLA, 18:3n-6), eicosapentaenoic acid (EPA, 20: 5n-3), and docosahexaenoic acid (DHA, 22:6n-3) have been shown to be cytotoxic to tumor cells. The objective of this work was to study the effect of PUFA on the radiation response of a 36B10 rat astrocytoma cell line. Supplementation of the astrocytoma cells with 15–45 μM GLA, EPA, or DHA produced marked changes in the fatty acid profiles of their phospholipids and neutral lipids. The methylene bridge index of these lipids increased significantly. These PUFA also exerted cytotoxic effects, as determined using the clonogenic cell survival assay. While GLA and DHA produced a moderate cell-killing effect, EPA was extremely cytotoxic, especially at a concentration of 45 μM. The monounsaturated oleic acid (OA, 18:1n-9) did not affect cell survival. Further, all three PUFA, and particularly GLA, increased the radiation-induced cell kill; OA did not enhance the effect of radiation. α-Tocopherol acetate blocked the enhanced radiation sensitivity of GLA- and DHA-supplemented cells. In conclusion, GLA, EPA, and DHA supplementation prior to, during, and after irradiation can enhance the radiation-induced cytotoxicity of rat astrocytoma cells. GLA and DHA supplementation post-irradiation also enhanced the radiation response of the 36B10 cells. Because GLA maximally increases the radioresponsiveness of a rat astrocytoma, this PUFA might prove useful in increasing the therapeutic efficacy of radiation in the treatment of certain gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonica acid

DGLA:

dihomo-γ-linolenic acid

DHA:

docosahexaenoic acid

DPA:

docosapentaenoic acid

DTA:

docosatetraenoic acid

EPA:

eicosapentaenoic acid

GLA:

γ-linolenic acid

OA:

oleic acid

PUFA:

polyunsaturate fatty acids

References

  1. Phuphanich, S., Ferrall, S., and Greenberg, H. (1993) Long-Term Survival in Malignant Glioma. Prognostic Factors. J. Florida Medical Association 80, 181–184.

    CAS  Google Scholar 

  2. Imperato, J.P., Paleologos, N.A., and Vick, N.A. (1991) Effects of Treatment on Long-Term Survivors with Malignant Astrocytomas, Ann. Neurol. 28, 818–822.

    Article  Google Scholar 

  3. Laramore, G.E., Martz, K.L., Nelson, J.S., Griffin, T.W., Chang, C.H., and Horton, J. (1989) Radiation Therapy Oncology Group (RTOG) Survival Data on Anaplastic Astrocytomas of the Brain: Does a More Aggressive Form of Treatment Impact Survival? Intl. J. Radiat. Oncol. Biol. Phys. 17, 1357–1366.

    Google Scholar 

  4. Spector, A.A., and Burns, C.P. (1987) Biological and Therapeutic Potential of Membrane Lipid Modification in Tumors, Cancer Res. 47, 4529–4537.

    PubMed  CAS  Google Scholar 

  5. Welsch, C.W. (1995) Review of the Effects of Dietary Fat on Experimental Mammary Gland Tumorigenesis: Role of Lipid Peroxidation, Free Rad. Biol. Med. 18, 757–773.

    Article  PubMed  CAS  Google Scholar 

  6. Connolly, J.M., and Rose, D.P. (1993) Effects of Fatty Acids on Invasion Through Reconstituted Basement Membrane (“Matrigel”) by a Human Breast Cancer Cell Line, Cancer Lett. 75, 137–142.

    Article  PubMed  CAS  Google Scholar 

  7. Scholar, E.M., Violi, L.A.D., Newland, J., Bresnic, E., and Birt, D.F. (1989) Effect of Dietary Fat on Metastasis of Lewis Lung Carcinoma and Balb/c Mammary Carcinoma, Nutr. Cancer 12, 109–119.

    Article  PubMed  CAS  Google Scholar 

  8. Karmali, R.A., Marsh, J., and Fuchs, C. (1984) Effect of ω-3 Fatty Acids on Growth on a Rat Mammary Tumor, J. Natl. Cancer Inst. 73, 457–461.

    PubMed  CAS  Google Scholar 

  9. Begin, M.E., Ells, G., and Horrobin, D.F. (1988) Polyunsaturated Fatty Acid-Induced Cytotoxicity Against Tumor Cells and Its Relationship to Lipid Peroxidation, J. Natl. Cancer Inst. 80, 188–194.

    PubMed  CAS  Google Scholar 

  10. Das, U.N., Huang, Y.S., Begin, M.E., Ells, G., and Horrobin, D.F. (1987) Uptake and Distribution of cis-Unsaturated Fatty Acids and Their Effect on Free Radical Generation in Normal and Tumor Cells in vitro, Free Rad. Biol. Med. 3, 9–14.

    Article  PubMed  CAS  Google Scholar 

  11. Begin, M.E., Das, U.N., Ells, G., and Horrobin, D.F. (1985) Selective Killing of Human Cancer Cells by Polyunsaturated Fatty Acids, Prostagl. Leukotr. Med. 19, 177–186.

    Article  CAS  Google Scholar 

  12. Begin, M.E. (1987) Effects of Polyunsaturated Fatty Acids and of Their Oxidation Products on Cell Survival, Chem. Phys. Lipids 45, 269–313.

    Article  PubMed  CAS  Google Scholar 

  13. Burns, C.P., and North, J.A. (1986) Adriamycin Transport and Sensitivity in Fatty Acid-Modified Leukemic Cells, Biochim. Biophys. Acta 888, 10–17.

    Article  PubMed  CAS  Google Scholar 

  14. Burns, C.P., Luttenegger, D.G., Dudley, D.T., Buettner, G.R., and Spector, A.A. (1977) Effect of Modification of Plasma Membrane Fatty Acid Composition on Fluidity and Methotrexate Transport in L1210 Murine Leukemia Cells, Cancer Res. 39, 1726–1732.

    Google Scholar 

  15. Burns, C.P., and Spector, A.A. (1987) Membrane Fatty Acid Composition in Tumor Cells: A Potential Therapeutic Adjunct, Lipids 22, 178–184.

    PubMed  CAS  Google Scholar 

  16. Spence, A.M., and Coates, P.W. (1978) Scanning Electron Microscopy of Cloned Astrocytic Lines Derived from Ethylnitrosourea-Induced Rat Glioma, Virchows Arch. B.: 28, 77–85.

    CAS  Google Scholar 

  17. Yerram, N.R., and Spector, A.A. (1989) Effects of Omega-3 Fatty Acids on Vascular Smooth Muscle Cells: Reduction in Arachidonic Acid Incorporation into Inositol Phospholipids, Lipids 24, 594–602.

    PubMed  CAS  Google Scholar 

  18. Folch, J.M., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  19. Chalvardjian, A., and Rudnicki, E. (1970) Determination of Lipid Phosphorus in the Nanomolar Range, Anal. Biochem. 36, 225–228.

    Article  PubMed  CAS  Google Scholar 

  20. Rouser, G., Kritchevsky, G., and Yamamoto, A. (1976) Column Chromatography of Phosphatides and Glycerolipids, in Lipid Chromatographic Analysis. (Marinetti, G.V., ed.), Vol. 3, pp. 713–776, Marcel Dekker, New York.

    Google Scholar 

  21. Morrison, W.R., and Smith, M.L. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride-Methanol, J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  22. Oberley, L.W., McCormick, M.L., Sierra-Rivera, E., and Kasemset-St. Clair, D. (1989) Manganese Superoxide Dismutase in Normal and Transformed Human Embryonic Lung Fibroblasts, Free Rad. Biol. Med. 6, 379–384.

    Article  PubMed  CAS  Google Scholar 

  23. Tisdale, M.J., Mahmoud, M.B. (1983) Activities of Free Radical Metabolizing Enzymes in Tumors, Br. J. Cancer 47, 809–812.

    PubMed  CAS  Google Scholar 

  24. Oberley, L.W., and Buettner, G.R. (1979) Role of Superoxide Dismutase in Cancer: A Review, Cancer Res. 39, 1141–1149.

    PubMed  CAS  Google Scholar 

  25. Cheeseman, K.H., Burton, G.W., Ingold, K.V., and Slater, T.F. (1984) Lipid Peroxidation and Lipid Antioxidants in Normal and Tumor Cells, Toxicol. Pathol. 12, 235–239.

    Article  PubMed  CAS  Google Scholar 

  26. White, H.B. (1973) Normal and Neoplastic Human Brain Tissues: Phospholipid, Fatty Acid and Unsaturation Number Modifications in Tumors, in Tumor Lipids: Biochemistry and Metabolism (Wood, R., ed.) pp. 75–88, American Oil Chemists’ Society Press, Champaign.

    Google Scholar 

  27. Mathers, L., and Bailey, M.J. (1975) Enzyme Deletions and Essential Fatty Acid Metabolism in Cultured Cells, J. Biol. Chem. 250, 1152–1153.

    PubMed  CAS  Google Scholar 

  28. Cheeseman, K.H., Emery, S., Maddix, S.P., Slater, T.F., Burton, G.W., and Ingold, K.U. (1988) Studies on Lipid Peroxidation in Normal and Tumor Tissues, Biochem. J. 250, 247–252.

    PubMed  CAS  Google Scholar 

  29. Borrello, S., Minotti, G., Palombini, G., Grattagliano, A., and Galeotti, T. (1985) Superoxide Dependent Lipid Peroxidation and Vitamin E Content of Microsomes from Hepatomas with Different Growth Rates, Arch. Biochem. Biophys. 238, 588–595.

    Article  PubMed  CAS  Google Scholar 

  30. De Vries, C.E.E., and Van Noorden, C.J.F. (1992) Effects of Dietary Fatty Acid Composition on Tumor Growth and Metastasis, Anticancer Res. 12, 1513–1522.

    PubMed  Google Scholar 

  31. Calorini, L., Fallani, A., Tombaccini, D., Barletta, E., Mugnai, G., Di Renzo, M.F., Comelio, P.M., and Ruggieri, S. (1989) Lipid Characteristics of RSV-Transformed Balb/c 3T3 Cell Lines with Different Spontaneous Metastatic Potentials, Lipids 24, 685–690.

    PubMed  CAS  Google Scholar 

  32. Das, U.N. (1990) Gamma Linolenic Acid, Arachidonic Acid and Eicosapentaenoic Acid as Potential Anticancer Drugs, Nutrition 6, 429–434.

    PubMed  CAS  Google Scholar 

  33. Fujiwara, F., Todo, S., and Imashuku, S. (1986) Antitumor Effect of γ-Linolenic Acid on Cultured Human Neuroblastoma Cells, Prostagl. Leukotr. Med. 23, 311–320.

    Article  CAS  Google Scholar 

  34. Begin, M.E., Ells, G., and Horrobin, D.F. (1987) Effects of Eicosanoid Precursors on TBA Reactive Material in Normal and Malignant Cells, in Prostaglandins and Lipid Metabolism in Radiation Injury (Walden, T.L., Jr., and Hughes, H.N., eds.) pp. 342–352, Plenum Publishing Corp. New York.

    Google Scholar 

  35. Takeda, S., Sim, P.G., Horrobin, D., Sanford, T., Chisholm, K.A., and Simmons, V. (1993) Mechanism of Lipid Peroxidation in Cancer Cells in Response to γ-Linolenic Acid Analyzed by GC-MS(I): Conjugated Dienes with Peroxyl (or Hydroperoxyl) Groups and Cell-Killing Effects, Anticancer Res. 13, 193–199.

    PubMed  CAS  Google Scholar 

  36. Takeda, S., Sim, P.G., Horrobin, D.F., Chisholm, K.A., Simmons, V.A., Ells, G.W., Jenkins, D.K., and Morse-Fisher, N.L. (1992) Intracellular Free Fatty Acid Release and Lipid Peroxidation in Cultured Human Breast Cancer Cells in Response to (γ-Linolenic Acid with Iron (GLA+Fe), Intl. J. Radiat. Oncol. 1, 759–763.

    CAS  Google Scholar 

  37. Hopewell, J.W., Van den Aardweg, G.J.M.J., Morris, G.M., Rezwani, M., Robbins, M.E.C., Ross, G.A., Whitehouse, E.M., Scott, C.A., and Horrobin, D.F. (1994) Amelioration of Both Early and Late Radiation-Induced Damage to Pig Skin by Essential Fatty Acids, Intl. J. Radiat. Oncol. Biol. Phys. 30, 1119–1125.

    CAS  Google Scholar 

  38. Hopewell, J.W., Robbins, M.E.C., Van den Aardweg, G.J.M.J., Morris, G.M., Ross, G.A., Whitehouse, E., Horrobin, D.F., and Scott, C.A. (1993) The Modulation of Radiation-Induced Damage to Pig Skin by Essential Fatty Acids, Br. J. Cancer 68, 1–7.

    PubMed  CAS  Google Scholar 

  39. Hopewell, J.W., Van den Aardweg, G.J.M.J., Morris, G.M., Rezwani, M., Robbins, M.E.C., Ross, G.A., Whitehouse, E., Scott, C.A., and Horrobin, D.F. (1994) Unsaturated Lipids as Modulators of Radiation Damage in Normal Tissues in New Approaches to Cancer Treatment. Unsaturated Lipids and Photodynamic Therapy (Horrobin, D.F., ed.) pp. 88–106, Churchill Comm., London.

    Google Scholar 

  40. Weisinger, H.S., Vingrys, A.J., and Sinclair, A.J. (1995) Dietary Manipulation of Long-Chain Polyunsaturated Fatty Acids in the Retina and Brain of Guinea Pigs, Lipids 30, 471–473.

    PubMed  CAS  Google Scholar 

  41. Salvatti, S., Campeggi, L.M., Benedetti, P.C., DiFelice, M., Gentile, V., Nardini, M., and Tomassi, G. (1993) Effects of Dietary Oils on Fatty Acid Composition and Lipid Peroxidation of Brain Membranes (Myelin and Synaptosomes) in Rats, J. Nutr. Biochem. 4, 346–350.

    Article  Google Scholar 

  42. Nariai, T., DeGeorge, J.J., Greig, N.H., Genka, S., Rapoport, S.I., and Purdon, A.D. (1994) Differences in Rates of Incorporation of Intravenously Injected Radiolabeled Fatty Acids into Phospholipids of Intracerebrally Implanted Tumor and Brain in Awake Rats, Clin. Exp. Metastasis 12, 213–225.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Vartak, S., Robbins, M.E.C. & Spector, A.A. Polyunsaturated fatty acids increase the sensitivity of 36B10 rat astrocytoma cells to radiation-induced cell kill. Lipids 32, 283–292 (1997). https://doi.org/10.1007/s11745-997-0035-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-997-0035-y

Keywords

Navigation